

Information For Maintainers of GNU Software

Richard Stallman
last updated January 6, 2002

Copyright c© 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software
Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this document, provided
the copyright notice and this permission notice are preserved on all copies.

Chapter 3: Recruiting Developers 1

1 About This Document

This file contains guidelines and advice for someone who is the maintainer of a GNU
program on behalf of the GNU Project. Everyone is entitled to change and redistribute
GNU software; you need not pay attention to this file to get permission. But if you want
to maintain a version for widespread distribution, we suggest you follow these guidelines; if
you would like to be a GNU maintainer, then it is essential to follow these guidelines.

Please send corrections or suggestions for this document to maintainers@gnu.org. If
you make a suggestion, please include a suggested new wording for it, to help us consider
the suggestion efficiently. We prefer a context diff to the ‘maintain.texi’ file, but if you
don’t have that file, you can make a context diff for some other version of this document,
or propose it in any way that makes it clear.

This document uses the gender-neutral third-person pronouns “person”, “per”, “pers”
and “perself” which were promoted, and perhaps invented, by Marge Piercy in Woman on
the Edge of Time. They are used just like “she”, “her”, “hers” and “herself”, except that
they apply equally to males and females. For example, “Person placed per new program
under the GNU GPL, to let the public benefit from per work, and to enable per to feel
person has done the right thing.”

The directory ‘/gd/gnuorg’ is found on the GNU file server, currently
fencepost.gnu.org; if you are the maintainer of a GNU package, you should have
an account there. Contact accounts@gnu.org if you don’t have one. (You can also
ask for accounts for people who help you a large amount in working on the package.)
‘/gd/gnuorg/maintain.tar.gz’ is a tar file containing all of these files in that directory
which are mentioned in this file; it is updated daily.

This release of the GNU Maintenance Instructions was last updated January 6, 2002.

2 Stepping Down

With good fortune, you will continue maintaining your package for many decades. But
sometimes for various reasons maintainers decide to step down.

If you’re the official maintainer of a GNU package and you decide to step down, please
inform the GNU Project (maintainers@gnu.org). We need to know that the package no
longer has a maintainer, so we can look for and appoint a new maintainer.

If you have an idea for who should take over, please tell maintainers@gnu.org your
suggestion. The appointment of a new maintainer needs the GNU Project’s confirmation,
but your judgment that a person is capable of doing the job will carry a lot of weight.

As your final act as maintainer, it would be helpful to set up the package under
savannah.gnu.org (see Chapter 8 [Old Versions], page 10). This will make it much easier
for the new maintainer to pick up where you left off and will ensure that the CVS tree is
not misplaced if it takes us a while to find a new maintainer.

mailto:maintainers@gnu.org

mailto:accounts@gnu.org

mailto:maintainers@gnu.org

mailto:maintainers@gnu.org

Chapter 4: Legal Matters 2

3 Recruiting Developers

Unless your package is a fairly small, you probably won’t do all the work on it yourself.
Most maintainers recruit other developers to help.

Sometimes people will offer to help. Some of them will be capable, while others will
not. It’s up to you to determine who provides useful help, and encourage those people to
participate more.

Some of the people who offer to help will support the GNU Project, while others may be
interested for other reasons. Some will support the goals of the Free Software Movement,
but some may not. They are all welcome to help with the work—we don’t ask people’s
views or motivations before they contribute to GNU packages.

As a consequence, you cannot expect all contributors to support the GNU Project, or
to have a concern for its policies and standards. So part of your job as maintainer is to
exercise your authority on these points when they arise. No matter how much of the work
other people do, you and not they are in charge of what goes in the release. When a crucial
point arises, you should calmly state your decision and stick to it.

Sometimes a package has several co-maintainers who share the role of maintainer. Unlike
developers who help, co-maintainers have actually been appointed jointly as the maintainers
of the package, and they carry out the maintainer’s functions together. If you would like to
propose some of your developers as co-maintainers, please contact maintainers@gnu.org.

4 Legal Matters

This chapter describes procedures you should follow for legal reasons as you maintain
the program, to avoid legal difficulties.

4.1 Recording Contributors

Keep correct records of which portions were written by whom. This is very important.

These records should say which files, or parts of files, were written by each person, and
which files or portions were revised by each person.

But they don’t need to be as detailed as a change log. They don’t need to distinguish
work done at different times, only different people. They don’t need describe changes in
more detail than which files or parts of a file were changed. And they don’t need to say
anything about the function or purpose of a file or change–the Register of Copyrights doesn’t
care what the text does, just who wrote or contributed to which parts.

You need not list someone who has contributed just a few lines (less than 15) of minor
changes, but keep in mind that a series of minor changes can add up to a significant
contribution that does need to be listed.

The list should also mention if certain files distributed in the same package are really a
separate program.

For example, this would describe an early version of GAS:

mailto:maintainers@gnu.org

Chapter 4: Legal Matters 3

Dean Elsner first version of all files except gdb-lines.c and m68k.c.
Jay Fenlason entire files gdb-lines.c and m68k.c, most of app.c,

plus extensive changes in messages.c, input-file.c, write.c
and revisions elsewhere.

Note: GAS is distributed with the files obstack.c and obstack.h, but
they are considered a separate package, not part of GAS proper.

Please keep these records in a file named ‘AUTHORS’ in the source directory for the
program itself.

4.2 Copyright Papers

If you maintain an FSF-copyrighted package, then you should follow certain legal proce-
dures when incorporating changes written by other people. This ensures that the FSF has
the legal right to distribute the package, and the right to defend its free status in court if
necessary.

Before incorporating significant changes, make sure that the person who wrote the
changes has signed copyright papers and that the Free Software Foundation has received
and signed them. We may also need a disclaimer from the person’s employer.

To check whether papers have been received, look in ‘/gd/gnuorg/copyright.list’.
If you can’t look there directly, fsf-records@gnu.org can check for you. Our clerk can
also check for papers that are waiting to be entered and inform you when expected papers
arrive.

The directory ‘/gd/gnuorg’ is found on the GNU machines; if you are the maintainer of
a GNU package, you should have an account on them. Contact accounts@gnu.org if you
don’t have one. (You can also ask for accounts for people who help you a large amount in
working on the package.)

In order for the contributor to know person should sign papers, you need to ask for the
necessary papers. If you don’t know per well, and you don’t know that person is used to
our ways of handling copyright papers, then it might be a good idea to raise the subject
with a message like this:

Would you be willing to assign the copyright to the Free Software Foundation,
so that we could install it in program?

or
Would you be willing to sign a copyright disclaimer to put this change in the
public domain, so that we can install it in program?

If the contributor wants more information, you can send per ‘/gd/gnuorg/conditions.text’,
which explains per options (assign vs. disclaim) and their consequences.

Once the conversation is under way and the contributor is ready for more details, you
should send one of the templates that are found in ‘/gd/gnuorg’. This section explains which
templates you should use in which circumstances. Please don’t use any of the templates
except for those listed here, and please don’t change the wording.

Once the conversation is under way, you can send the contributor the precise wording
and instructions by email. Before you do this, make sure to get the current version of the

mailto:fsf-records@gnu.org

mailto:accounts@gnu.org

Chapter 4: Legal Matters 4

template you will use! We change these templates occasionally—don’t keep using an old
version.

For large changes, ask the contributor for an assignment. Send per a copy of the file
‘/gd/gnuorg/request-assign.changes’.

For medium to small changes, request a disclaimer by sending per the file
‘/gd/gnuorg/request-disclaim.changes’.

If the contributor is likely to keep making changes, person might want to sign an assign-
ment for all per future changes to the program. So it is useful to offer per that alternative.
If person wants to do it that way, send per the ‘/gd/gnuorg/request-assign.future’.

When you send a ‘request-’ file, you don’t need to fill in anything before sending it.
Just send the file verbatim to the contributor. The file gives per instructions for how to ask
the FSF to mail per the papers to sign. The ‘request-’ file also raises the issue of getting
a copyright disclaimer from the contributor’s employer.

For less common cases, we have template files you should send to the contributor. Be
sure to fill in the name of the person and the name of the program in these templates,
where it says NAME OF PERSON and NAME OF PROGRAM, before sending; otherwise
person might sign without noticing them, and the papers would be useless. Note that in
some templates there is more than one place to put the name of the program or the name of
the person; be sure to change all of them. All the templates raise the issue of an employer’s
disclaimer as well.

You do not need to ask for separate papers for a manual that is distributed only in the
software package it describes. But if we sometimes distribute the manual separately (for
instance, if we publish it as a book), then we need separate legal papers for changes in
the manual. For smaller changes, use ‘/gd/gnuorg/disclaim.changes.manual’; for larger
ones, use ‘/gd/gnuorg/assign.changes.manual’. To cover both past and future changes
to a manual, you can use ‘/gd/gnuorg/assign.future.manual’. For a translation of a
manual, use ‘/gd/gnuorg/assign.translate.manual’.

If a contributor is reluctant to sign an assignment for a large change, and is willing to
sign a disclaimer instead, that is acceptable, so you should offer this alternative if it helps
you reach agreement. We prefer an assignment for a larger change, so that we can enforce
the GNU GPL for the new text, but a disclaimer is enough to let us use the text.

If you maintain a collection of programs, occasionally someone will contribute an
entire separate program or manual that should be added to the collection. Then you can
use the files ‘request-assign.program’, ‘disclaim.program’, ‘assign.manual’, and
‘disclaim.manual’. We very much prefer an assignment for a new separate program or
manual, unless it is quite small, but a disclaimer is acceptable if the contributor insists on
handling the matter that way.

Although there are other templates besides the ones listed here, they are for special
circumstances; please do not use them without getting advice from assign@gnu.org.

If you are not sure what to do, then please ask assign@gnu.org for advice; if the
contributor asks you questions about the meaning and consequences of the legal papers,
and you don’t know the answers, you can forward them to assign@gnu.org and we will
answer.

mailto:assign@gnu.org

mailto:assign@gnu.org

mailto:assign@gnu.org

Chapter 4: Legal Matters 5

Please do not try changing the wording of a template yourself. If you think a change is
needed, please talk with assign@gnu.org, and we will work with a lawyer to decide what
to do.

4.3 Copyright Notices

You should maintain a legally valid copyright notice and a license notice in each nontrivial
file in the package. (Any file more than ten lines long is nontrivial for this purpose.) This
includes header files and interface definitions, makefiles, scripts, other data files used in
building or running the program, documentation files, and any supporting files. If a file has
been explicitly placed in the public domain, then instead of a copyright notice, it should
have a notice saying explicitly that it is in the public domain.

Even image files and sound files should contain copyright notices and license notices, if
they can. Some formats do not have room for textual annotations; for these files, state the
copyright and copying permissions in a README file in the same directory.

Change log files should have a copyright notice and license notice at the end, since new
material is added at the beginning but the end remains the end.

When a file is automatically generated from some other file in the distribution, it is
useful to copy the copyright notice and permission notice of the file it is generated from, if
you can. Alternatively, put a notice at the beginning saying which file it is generated from.

A copyright notice looks like this:
Copyright year1, year2, year3 copyright-holder

The copyright-holder may be the Free Software Foundation, Inc., or someone else; you
should know who is the copyright holder for your package.

The list of year numbers should include each year in which you finished preparing a
version which was actually released, and which was an ancestor of the current version.

Please reread the paragraph above, slowly and carefully. It is important to understand
that rule precisely, much as you would understand a complicated C statement in order to
hand-simulate it.

This list is not a list of years in which versions were released. It is a list of years in
which versions, later released, were completed. So if you finish a version on Dec 31, 1994
and release it on Jan 1, 1995, this version requires the inclusion of 1994, but doesn’t require
the inclusion of 1995.

Do not abbreviate the year list using a range; for instance, do not write ‘1996--1998’;
instead, write ‘1996, 1997, 1998’.

The versions that matter, for purposes of this list, are versions that were ancestors of
the current version. So if you made a temporary branch in maintenance, and worked on
branches A and B in parallel, then each branch would have its own list of years, which is
based on the versions released in that branch. A version in branch A need not be reflected
in the list of years for branch B, and vice versa.

However, if you copy code from branch A into branch B, the years for branch A (or at
least, for the parts that you copied into branch B) do need to appear in the list in branch
B, because now they are ancestors of branch B.

mailto:assign@gnu.org

Chapter 4: Legal Matters 6

This rule is complicated. If we were in charge of copyright law, we would probably
change this (as well as many other aspects).

For an FSF-copyrighted package, if you have followed the procedures to obtain legal
papers, each file should have just one copyright holder: the Free Software Foundation, Inc.
So the copyright notice should give that name.

But if contributors are not all assigning their copyrights to a single copyright holder, it
can easily happen that one file has several copyright holders. Each contributor of nontrivial
amounts is a copyright holder.

In that case, you should always include a copyright notice in the name of main copyright
holder of the file. You can also include copyright notices for other copyright holders as
well, and this is a good idea for those who have contributed a large amount and for those
who specifically ask for notices in their names. But you don’t have to include a notice for
everyone who contributed to the file, and that would be rather inconvenient.

4.4 License Notices

Every nontrivial file needs a license notice as well as the copyright notice. (Without a
license notice giving permission to copy and change the file, copying and modification are
legally prohibited, and that would make the file non-free.)

Typically the license notice for program files (including build scripts, configure files and
makefiles) should cite the GPL, like this:

This file is part of GNU program

GNU program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2, or (at your option) any later version.
GNU program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License along with
program; see the file COPYING. If not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

But in a small program which is just a few files, you can use this instead:
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA.

Documentation files should have license notices also. Manuals should use the GNU Free
Documentation License. Here is an example of the license notice to use after the copyright

Chapter 4: Legal Matters 7

notice. Please adjust the list of invariant sections as appropriate for your manual. (If there
are none, then say “with no invariant sections”.)

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License", the Front-Cover
texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below). A copy of the license is included in the section entitled
"GNU Free Documentation License".

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.

You should have received a copy of the GNU Free Documentation License
along with program; see the file COPYING.DOC. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

If the FSF does not publish this manual on paper, then omit the last sentence in (b)
that talks about copies published by the FSF. If the FSF is not the copyright holder, then
replace ‘FSF’ with the appropriate name.

See http://www.gnu.org/licenses/fdl-howto.html for more advice about how to use
the GNU FDL.

If the manual is over 400 pages, or if the FSF thinks it might be a good choice for
publishing on paper, then please include our standard invariant section which explains the
importance of free documentation. Write to assign@gnu.org to get a copy of this section.

Note that when you distribute several manuals together in one software package, their
on-line forms can share a single copy of the GFDL (see section 6). However, the printed
(‘.dvi’) forms should each contain a copy of the GFDL, unless they are set up to be printed
and published only together.

Small supporting files, short manuals (under 300 lines long) and rough documentation
(README files, INSTALL files, etc) can use simple all-permissive licenses.

If you would like help with license issues or with using the GFDL, please contact
licensing@gnu.org.

4.5 External Libraries

When maintaining an FSF-copyrighted GNU package, sometimes you will want to use
a general-purpose free software module which offers a useful functionality, as a “library”
facility (though the module is not always packaged technically as a library).

mailto:assign@gnu.org

mailto:licensing@gnu.org

Chapter 6: Platforms to Support 8

In a case like this, it would be unreasonable to ask the author of that module to assign
the copyright to the FSF. After all, person did not write it specifically as a contribution to
your package, so it would be impertinent to ask per, out of the blue, “Please give the FSF
your copyright.”

So the thing to do in this case is to make your program use the module, but not consider
it a part of your program. There are two reasonable methods of doing this:

1. Assume the module is already installed on the system, and use it when linking your
program. This is only reasonable if the module really has the form of a library.

2. Include the module in your package, putting the source in a separate subdirectory
whose ‘README’ file says, “This is not part of the GNU FOO program, but is used
with GNU FOO.” Then set up your makefiles to build this module and link it into the
executable.

For this method, it is not necessary to treat the module as a library and make a ‘.a’
file from it. You can link with the ‘.o’ files directly in the usual manner.

Both of these methods create an irregularity, and our lawyers have told us to minimize
the amount of such irregularity. So consider using these methods only for general-purpose
modules that were written for other programs and released separately for general use. For
anything that was written as a contribution to your package, please get papers signed.

5 Cleaning Up Changes

Don’t feel obligated to include every change that someone asks you to include. You must
judge which changes are improvements—partly based on what you think the users will like,
and partly based on your own judgement of what is an improverment. If you think a change
is not good, you should reject it.

If someone sends you changes which are useful, but written in an ugly way or hard
to understand and maintain in the future, don’t hesitate to ask person to clean up per
changes before you merge them. Since the amount of work we can do is limited, the more
we convince others to help us work efficiently, the faster GNU will advance.

If the contributor will not or can not make the changes clean enough, then it is legitimate
to say “I can’t install this in its present form; I can only do so if you clean it up.” Invite per
to distribute per changes another way, or to find other people to make them clean enough
for you to install and maintain.

The only reason to do these cleanups yourself is if (1) it is easy, less work than telling
the author what to clean up, or (2) the change is an important one, important enough to
be worth the work of cleaning it up.

The GNU Coding Standards are a good thing to send people when you ask them to
clean up changes (see section “Contents” in GNU Coding Standards). The Emacs Lisp
manual contains an appendix that gives coding standards for Emacs Lisp programs; it is
good to urge authors to read it (see section “Tips and Standards” in The GNU Emacs Lisp
Reference Manual).

Chapter 7: Dealing With Mail 9

6 Platforms to Support

Most GNU packages run on a wide range of platforms. These platforms are not equally
important.

The most important platforms for a GNU package to support are GNU and GNU/Linux.
Developing the GNU operating system is the whole point of the GNU Project; a GNU
package exists to make the whole GNU system more powerful. So please keep that goal in
mind and let it shape your work. For instance, every new feature you add should work on
GNU, and GNU/Linux if possible too. If a new feature only runs on GNU and GNU/Linux,
it could still be acceptable. However, a feature that runs only on other systems and not on
GNU or GNU/Linux makes no sense in a GNU package.

You will naturally want to keep the program running on all the platforms it supports.
But you personally will not have access to most of these platforms–so how should you do
it?

Don’t worry about trying to get access to all of these platforms. Even if you did have
access to all the platforms, it would be inefficient for you to test the program on each
platform yourself. Instead, you should test the program on a few platforms, including GNU
or GNU/Linux, and let the users test it on the other platforms. You can do this through
a pretest phase before the real release; when there is no reason to expect problems, in a
package that is mostly portable, you can just make a release and let the users tell you if
anything unportable was introduced.

It is important to test the program personally on GNU or GNU/Linux, because these
are the most important platforms for a GNU package. If you don’t have access to one of
these platforms, please ask maintainers@gnu.org to help you out.

Supporting other platforms is optional—we do it when that seems like a good idea, but
we don’t consider it obligatory. If the users don’t take care of a certain platform, you may
have to desupport it unless and until users come forward to help. Conversely, if a user offers
changes to support an additional platform, you will probably want to install them, but you
don’t have to. If you feel the changes are complex and ugly, if you think that they will
increase the burden of future maintenance, you can and should reject them.

7 Dealing With Mail

Once a program is in use, you will get bug reports for it. Most GNU programs have
their own special lists for sending bug reports. The advertised bug-reporting email address
should always be ‘bug-program@gnu.org’, to help show users that the program is a GNU
package, but it is ok to set up that list to forward to another site for further forwarding.
The package distribution should state the name of the bug-reporting list in a prominent
place, and ask users to help us by reporting bugs there.

We also have a catch-all list, bug-gnu-utils@gnu.org, which is used for all GNU pro-
grams that don’t have their own specific lists. But nowadays we want to give each program
its own bug-reporting list and move away from using bug-gnu-utils.

If you are the maintainer of a GNU package, you should have an account on the GNU
servers; contact accounts@gnu.org if you don’t have one. (You can also ask for accounts

mailto:maintainers@gnu.org

mailto:bug-gnu-utils@gnu.org

mailto:bug-gnu-utils

mailto:accounts@gnu.org

Chapter 8: Recording Old Versions 10

for people who help you a large amount in working on the package.) With this account,
you can edit ‘/com/mailer/aliases’ to create a new unmanaged list or add yourself to an
existing unmanaged list. A comment near the beginning of that file explains how to create
a Mailman-managed mailing list.

But if you don’t want to learn how to do those things, you can alternatively ask
alias-file@gnu.org to add you to the bug-reporting list for your program. To set up
a new list, contact new-mailing-list@gnu.org. You can subscribe to a list managed by
Mailman by sending mail to the corresponding ‘-request’ address.

When you receive bug reports, keep in mind that bug reports are crucial for your work.
If you don’t know about problems, you cannot fix them. So always thank each person who
sends a bug report.

You don’t have an obligation to give more response than that, though. The main purpose
of bug reports is to help you contribute to the community by improving the next version of
the program. Many of the people who report bugs don’t realize this—they think that the
point is for you to help them individually. Some will ask you to focus on that instead of on
making the program better. If you comply with their wishes, you will have been distracted
from the job of maintaining the program.

For example, people sometimes report a bug in a vague (and therefore useless) way, and
when you ask for more information, they say, “I just wanted to see if you already knew the
solution” (in which case the bug report would do nothing to help improve the program).
When this happens, you should explain to them the real purpose of bug reports. (A canned
explanation will make this more efficient.)

When people ask you to put your time into helping them use the program, it may seem
“helpful” to do what they ask. But it is much less helpful than improving the program,
which is the maintainer’s real job.

By all means help individual users when you feel like it, if you feel you have the time
available. But be careful to limit the amount of time you spend doing this—don’t let it
eat away the time you need to maintain the program! Know how to say no; when you are
pressed for time, just “thanks for the bug report—I will fix it” is enough response.

Some GNU packages, such as Emacs and GCC, come with advice about how to make
bug reports useful. If you want to copy and adapt that, it could be a very useful thing to
do.

8 Recording Old Versions

It is very important to keep backup files of all source files of GNU. You can do this using
RCS, CVS or PRCS if you like. The easiest way to use RCS or CVS is via the Version Control
library in Emacs; section “Concepts of Version Control” in The GNU Emacs Manual.

The history of previous revisions and log entries is very important for future maintainers
of the package, so even if you do not make it publicly accessible, be careful not to put
anything in the repository or change log that you would not want to hand over to another
maintainer some day.

The GNU Project provides a CVS server that GNU software packages can use:
subversions.gnu.org. (The name refers to the multiple versions and their subversions

mailto:alias-file@gnu.org

mailto:new-mailing-list@gnu.org

Chapter 9: Distributions 11

that are stored in a CVS repository.) You don’t have to use this repository, but if you plan
to allow public read-only access to your development sources, it is convenient for people to
be able to find various GNU packages in a central place. The CVS Server is managed by
cvs-hackers@gnu.org.

The GNU project also provides additional developer resources on subversions.gnu.org
through its savannah.gnu.org interface. All GNU maintainers are encouraged to take
advantage of these facilities, as savannah can serve to foster a sense of community among
all GNU developers and help in keeping up with project management.

9 Distributions

It is important to follow the GNU conventions when making GNU software distributions.

9.1 Distribution tar Files

The tar file for version m.n of program foo should be named ‘foo-m.n.tar’. It should
unpack into a subdirectory named ‘foo-m.n’. Tar files should not unpack into files in the
current directory, because this is inconvenient if the user happens to unpack into a directory
with other files in it.

Here is how the ‘Makefile’ for Bison creates the tar file. This method is good for other
programs.

dist: bison.info
echo bison-‘sed -e ’/version_string/!d’ \

-e ’s/[^0-9.]*\([0-9.]*\).*/\1/’ -e q version.c‘ > .fname
-rm -rf ‘cat .fname‘
mkdir ‘cat .fname‘
dst=‘cat .fname‘; for f in $(DISTFILES); do \

ln $(srcdir)/$$f $$dst/$$f || { echo copying $$f; \
cp -p $(srcdir)/$$f $$dst/$$f ; } \

done
tar --gzip -chf ‘cat .fname‘.tar.gz ‘cat .fname‘
-rm -rf ‘cat .fname‘ .fname

Source files that are symbolic links to other file systems cannot be installed in the
temporary directory using ln, so use cp if ln fails.

Using Automake is a good way to take care of writing the dist target.

9.2 Distribution Patches

If the program is large, it is useful to make a set of diffs for each release, against the
previous important release.

At the front of the set of diffs, put a short explanation of which version this is for and
which previous version it is relative to. Also explain what else people need to do to update
the sources properly (for example, delete or rename certain files before installing the diffs).

The purpose of having diffs is that they are small. To keep them small, exclude files that
the user can easily update. For example, exclude info files, DVI files, tags tables, output

mailto:cvs-hackers@gnu.org

Chapter 9: Distributions 12

files of Bison or Flex. In Emacs diffs, we exclude compiled Lisp files, leaving it up to the
installer to recompile the patched sources.

When you make the diffs, each version should be in a directory suitably named—for
example, ‘gcc-2.3.2’ and ‘gcc-2.3.3’. This way, it will be very clear from the diffs them-
selves which version is which.

If you use GNU diff to make the patch, use the options ‘-rc2P’. That will put any
new files into the output as “entirely different.” Also, the patch’s context diff headers
should have dates and times in Universal Time using traditional Unix format, so that patch
recipients can use GNU patch’s ‘-Z’ option. For example, you could use the following
Bourne shell command to create the patch:

LC_ALL=C TZ=UTC0 diff -rc2P gcc-2.3.2 gcc-2.3.3 | \
gzip -9 >gcc-2.3.2-2.3.3.patch.gz

If the distribution has subdirectories in it, then the diffs probably include some files in
the subdirectories. To help users install such patches reliably, give them precise directions
for how to run patch. For example, say this:

To apply these patches, cd to the main directory of the program
and then use ‘patch -p1’. ‘-p1’ avoids guesswork in choosing
which subdirectory to find each file in.

It’s wise to test your patch by applying it to a copy of the old version, and checking that
the result exactly matches the new version.

9.3 Distribution on ftp.gnu.org

GNU packages are distributed through directory ‘/gnu’ on ftp.gnu.org. Each package
should have a subdirectory named after the package, and all the distribution files for the
package should go in that subdirectory.

Only the latest version of any program needs to be on ftp.gnu.org. Being an archive
of old versions is not the function of ftp.gnu.org.

Diffs are another matter. Since they are much smaller than distribution files, it is good
to keep the diffs around for quite a while.

Please talk with ftp-upload@gnu.org in regard to putting new versions on
ftp.gnu.org.

If you have an interest in seeing the monthly download logs from the FTP site at
ftp.gnu.org for your program, that is something that ftp-upload@gnu.org can set up
for you. Please contact them if you are interested.

9.4 Test Releases

When you release a greatly changed new major version of a program, you might want
to do so as a pretest. This means that you make a tar file, but send it only to a group of
volunteers that you have recruited. (Use a suitable GNU mailing list/newsgroup to recruit
them.) We normally use the FTP server alpha.gnu.org for pretests and prerelease versions.
You can place items on alpha.gnu.org by putting them in the ‘~ftp/gnu’ directory on
fencepost.gnu.org.

mailto:ftp-upload@gnu.org

mailto:ftp-upload@gnu.org

Chapter 12: Terminology Issues 13

Once a program gets to be widely used and people expect it to work solidly, it is a good
idea to do pretest releases before each “real” release.

If you are about to release version 4.6 but you want to do a pretest first, call it 4.5.90.
If you need a second pretest, call it 4.5.91, and so on. If you are really unlucky and ten
pretests are not enough, after 4.5.99 you could advance to 4.5.990 and so on.

One thing that you should never do is to release a pretest with the same version number
as the planned real release. Many people will look only at the version number (in the tar file
name, in the directory name that it unpacks into, or wherever they can find it) to determine
whether a tar file is the latest version. People might look at the test release in this way
and mistake it for the real release. Therefore, always change the number when you release
changed code.

10 Announcing Releases

When you have a new release, please make an announcement. You can maintain your
own mailing list for announcements if you like, or you can use the moderated general GNU
announcements list, info-gnu@gnu.org.

If you use your own list, you can decide as you see fit what events are worth announcing.
If you use info-gnu@gnu.org, please do not announce pretest releases, only real releases.
But real releases do include releases made just to fix bugs.

11 Web Pages

Please write pages about your package for installation www.gnu.org. The pages should
follow our usual standards for web pages (see http://www.gnu.org/server); we chose them
in order to support a wide variety of browsers, to focus on information rather than flashy
eye candy, and to keep the site simple and uniform.

Please talk with webmasters@gnu.org about the arrangements for installing and updat-
ing pages. There are various ways this can be done: you can mail them pages to install, they
can make an account for you, or you can keep the pages in CVS on subversions.gnu.org
and have them automatically checked out into the web server.

Some GNU packages have just simple web pages, but the more information you provide,
the better. So please write as much as you usefully can, and put all of it on www.gnu.org.
However, pages that access databases (such as mail logs or bug tracking) are an exception;
set them up wherever is convenient for you, and the pages on www.gnu.org can link to
them.

12 Terminology Issues

This chapter explains a couple of issues of terminology which are important for correcting
two widespread and important misunderstandings about GNU.

mailto:info-gnu@gnu.org

mailto:info-gnu@gnu.org

mailto:webmasters@gnu.org

Chapter 13: Hosting 14

12.1 Free Software and Open Source

The terms “free software” and “open source” are the slogans of two different movements
which differ in their basic philosophy. The Free Software Movement is idealistic, and raises
issues of freedom, ethics, principle and what makes for a good society. The Open Source
Movement, founded in 1998, studiously avoids such questions. For more explanation, see
http://www.gnu.org/philosophy/free-software-for-freedom.html.

The GNU Project is aligned with the Free Software Movement. This doesn’t mean that
all GNU contributors and maintainers have to agree; your views on these issues are up to
you, and you’re entitled to express them when speaking for yourself.

However, due to the much greater publicity that the Open Source Movement receives,
the GNU Project needs to overcome a widespread mistaken impression that GNU is and
always was an activity of the Open Source Movement. For this reason, please use the term
“free software,” rather than “open source,” in GNU software releases, GNU documentation,
and announcements and articles that you publish in your role as the maintainer of a GNU
package. A reference to the URL given above, to explain the difference, is a useful thing to
include as well.

12.2 GNU and Linux

The GNU Project was formed to develop a free Unix-like operating system, GNU. The
existence of this system is our major accomplishment. However, the widely used version of
the GNU system, in which Linux is used as the kernel, is often called simply “Linux”. As
a result, most users don’t know about the GNU Project’s major accomplishment—or more
precisely, they know about it, but don’t realize it is the GNU Project’s accomplishment and
reason for existence. Even people who believe they know the real history often believe that
the goal of GNU was to develop “tools” or “utilities.”

To correct this confusion, we have made a years-long effort to distinguish between Linux,
the kernel that Linus Torvalds wrote, and GNU/Linux, the operating system that is the
combination of GNU and Linux. The resulting increased awareness of what the GNU
Project has already done helps every activity of the GNU Project recruit more support and
contributors.

Please make this distinction consistently in GNU software releases, GNU documentation,
and announcements and articles that you publish in your role as the maintainer of a GNU
package. If you want to explain the terminology and its reasons, you can refer to the URL
http://www.gnu.org/gnu/linux-and-gnu.html.

13 Hosting

We would like to recommend using subversions.gnu.org as the CVS repository for
your package, and using ftp.gnu.org as the standard FTP site. It is ok to use other
machines if you wish. If you use a company’s machine to hold the repository for your
program, or as its ftp site, please put this statement in a prominent place on the site, so as
to prevent people from getting the wrong idea about the relationship between the package
and the company:

Chapter 15: Using the Proofreaders List 15

The programs <list of them> hosted here are free software packages
of the GNU Project, not products of <company name>. We call them
"free software" because you are free to copy and redistribute them,
following the rules stated in the license of each package. For more
information, see http://www.gnu.org/philosophy/free-sw.html.

If you are looking for service or support for GNU software, see
http://www.gnu.org/help/gethelp.html for suggestions of where to ask.

If you would like to contribute to the development of one of these
packages, contact the package maintainer or the bug-reporting address
of the package (which should be listed in the package itself), or look
on www.gnu.org for more information on how to contribute.

14 Free Software Directory

The Free Software Directory aims to be a complete list of free software packages,
within certain criteria. Every GNU package should be listed there, so please contact
bug-directory@gnu.org to ask for information on how to write an entry for your package.

15 Using the Proofreaders List

If you want help finding errors in documentation, or help improving the quality of writ-
ing, or if you are not a native speaker of English and want help producing good English
documentation, you can use the GNU proofreaders mailing list: proofreaders@gnu.org.

But be careful when you use the list, because there are over 200 people on it. If you simply
ask everyone on the list to read your work, there will probably be tremendous duplication
of effort by the proofreaders, and you will probably get the same errors reported 100 times.
This must be avoided.

Also, the people on the list do not want to get a large amount of mail from it. So do
not ever ask people on the list to send mail to the list!

Here are a few methods that seem reasonable to use:

• For something small, mail it to the list, and ask people to pick a random number from
1 to 20, and read it if the number comes out as 10. This way, assuming 50% response,
some 5 people will read the piece.

• For a larger work, divide your work into around 20 equal-sized parts, tell people where
to get it, and ask each person to pick randomly which part to read.
Be sure to specify the random choice procedure; otherwise people will probably use a
mental procedure that is not really random, such as "pick a part near the middle", and
you will not get even coverage.
You can either divide up the work physically, into 20 separate files, or describe a virtual
division, such as by sections (if your work has approximately 20 sections). If you do
the latter, be sure to be precise about it—for example, do you want the material before
the first section heading to count as a section, or not?

mailto:bug-directory@gnu.org

mailto:proofreaders@gnu.org

Index 16

• For a job needing special skills, send an explanation of it, and ask people to send you
mail if they volunteer for the job. When you get enough volunteers, send another
message to the list saying "I have enough volunteers, no more please."

Index

/
‘/gd/gnuorg’ directory . 3

A
alpha.gnu.org, ftp site for test releases 12
‘AUTHORS’ file . 3
automake . 11

B
beta releases . 12
bug reports . 9

C
contributions, accepting . 8
copyright notices in program files 5
copyright papers . 3
CVS repository . 14

D
data base of GNU copyright assignments 3
diff . 12
distribution, tar files . 11

E
email, for receiving bug reports 9

F
free software. 14
Free Software Directory . 15
FTP site . 14
ftp.gnu.org, the GNU ftp site 12

G
GNU ftp site . 12
GNU/Linux . 14

H
hosting . 14

L
legal matters . 2
legal papers for changes in manuals 4
license notices in program files 6
Linux . 14

M
mailing list for bug reports . 9
movements, Free Software and Open Source . . . 14

O
open source . 14

P
patch . 12
patches, against previous releases 11
pretest releases . 12
proofreading . 15

Q
quality of changes suggested by others 8

R
recording contributors . 2
repository . 14
responding to bug reports . 10

T
terminology . 13
test releases . 12
time stamp in diffs . 12

V
version control . 10

W
web pages . 13

i

Table of Contents

1 About This Document . 1

2 Stepping Down . 1

3 Recruiting Developers. 2

4 Legal Matters . 2
4.1 Recording Contributors . 2
4.2 Copyright Papers. 3
4.3 Copyright Notices . 5
4.4 License Notices. 6
4.5 External Libraries . 7

5 Cleaning Up Changes . 8

6 Platforms to Support . 9

7 Dealing With Mail . 9

8 Recording Old Versions 10

9 Distributions . 11
9.1 Distribution tar Files . 11
9.2 Distribution Patches . 11
9.3 Distribution on ftp.gnu.org . 12
9.4 Test Releases . 12

10 Announcing Releases . 13

11 Web Pages . 13

12 Terminology Issues . 13
12.1 Free Software and Open Source . 14
12.2 GNU and Linux . 14

13 Hosting . 14

14 Free Software Directory 15

ii

15 Using the Proofreaders List 15

Index . 16

		About This Document

		Stepping Down

		Recruiting Developers

		Legal Matters

		Recording Contributors

		Copyright Papers

		Copyright Notices

		License Notices

		External Libraries

		Cleaning Up Changes

		Platforms to Support

		Dealing With Mail

		Recording Old Versions

		Distributions

		Distribution tar Files

		Distribution Patches

		Distribution on ftp.gnu.org

		Test Releases

		Announcing Releases

		Web Pages

		Terminology Issues

		Free Software and Open Source

		GNU and Linux

		Hosting

		Free Software Directory

		Using the Proofreaders List

		Index

