Kernel driver `lm80.o' ====================== Status: Complete and tested Supported chips: * National Semiconductors LM80 Prefix `lm80' Addresses scanned: I2C 0x20 - 0x2f (inclusive) Author: Frodo Looijaard and Philip Edelbrock Module Parameters ----------------- * force: short array (min = 1, max = 48) List of adapter,address pairs to boldly assume to be present * force_lm80: short array (min = 1, max = 48) List of adapter,address pairs which are unquestionably assumed to contain a `lm80' chip * ignore: short array (min = 1, max = 48) List of adapter,address pairs not to scan * ignore_range: short array (min = 1, max = 48) List of adapter,start-addr,end-addr triples not to scan * probe: short array (min = 1, max = 48) List of adapter,address pairs to scan additionally * probe_range: short array (min = 1, max = 48) List of adapter,start-addr,end-addr triples to scan additionally Description ----------- This driver implements support for the National Semiconductors LM80. It is descibed as a `Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor'. The LM80 implements one temperature sensor, two FAN rotation speed sensors, seven voltage sensors, alarms, and some miscellaneous stuff. Temperatures are measured in degrees Celcius. There are two sets of limits which operate independently. When the HOT Temperature Limit is crossed, this will cause an alarm that will be reasserted until the temperature drops below the HOT Hysteresis. The Overtemperature Shotdown (OS) limits should work in the same way (but this must be checked; the datasheet is unclear about this). Measurements are guaranteed between -55 and +125 degrees. The current temperature measurement has a resolution of 0.0625 degrees; the limits have a resolution of 1 degree. FAN rotation speeds are reported in RPM (rotations per minute). An alarm is triggered if the rotation speed has dropped below a programmable limit. FAN readings can be divided by a programmable divider (1, 2, 4 or 8) to give the readings more range or accuracy. This is important because some FANs report only one 'tick' each rotation, while others report two - making all readings twice as high. Not all RPM values can accurately be represented, so some rounding is done. With a divider of 2, the lowest representable value is around 2600 RPM. Voltage ensors (also known as IN sensors) report their values in volts. An alarm is triggered if the voltage has crossed a programmable minimum or maximum limit. Note that minimum in this case always means 'closest to zero'; this is important for negative voltage measurements. All voltage inputs can measure voltages between 0 and 2.55 volts, with a resolution of 0.01 volt. If an alarm triggers, it will remain triggered until the hardware register is read at least once. This means that the cause for the alarm may already have disappeared! Note that in the current implementation, all hardware registers are read whenever any data is read (unless it is less than 2.0 seconds since the last update). This means that you can easily miss once-only alarms. The LM80 only updates its values each 1.5 seconds; reading it more often will do no harm, but will return 'old' values. Chip Features ------------- Chip `lm80' LABEL LABEL CLASS COMPUTE CLASS ACCESS MAGNITUDE in0 NONE NONE R 2 in1 NONE NONE R 2 in2 NONE NONE R 2 in3 NONE NONE R 2 in4 NONE NONE R 2 in5 NONE NONE R 2 in6 NONE NONE R 2 in0_min in0 in0 RW 2 in1_min in1 in1 RW 2 in2_min in2 in2 RW 2 in3_min in3 in3 RW 2 in4_min in4 in4 RW 2 in5_min in5 in5 RW 2 in6_min in6 in6 RW 2 in0_max in0 in0 RW 2 in1_max in1 in1 RW 2 in2_max in2 in2 RW 2 in3_max in3 in3 RW 2 in4_max in4 in4 RW 2 in5_max in5 in5 RW 2 in6_max in6 in6 RW 2 fan1 NONE NONE R 0 fan2 NONE NONE R 0 fan1_min fan1 NONE RW 0 fan2_min fan2 NONE RW 0 temp NONE NONE R 2 temp_hot_hyst temp temp RW 2 temp_hot_max temp temp RW 2 temp_os_hyst temp temp RW 2 temp_os_max temp temp RW 2 fan1_div fan1 NONE RW 0 fan2_div fan2 NONE RW 0 alarms NONE NONE R 0 LABEL FEATURE SYMBOL SYSCTL FILE:OFFSET in0 SENSORS_LM80_IN0 in0:3 in1 SENSORS_LM80_IN1 in1:3 in2 SENSORS_LM80_IN2 in2:3 in3 SENSORS_LM80_IN3 in3:3 in4 SENSORS_LM80_IN4 in4:3 in5 SENSORS_LM80_IN5 in5:3 in6 SENSORS_LM80_IN6 in6:3 in0_min SENSORS_LM80_IN0_MIN in0:1 in1_min SENSORS_LM80_IN1_MIN in1:1 in2_min SENSORS_LM80_IN2_MIN in2:1 in3_min SENSORS_LM80_IN3_MIN in3:1 in4_min SENSORS_LM80_IN4_MIN in4:1 in5_min SENSORS_LM80_IN5_MIN in5:1 in6_min SENSORS_LM80_IN6_MIN in6:1 in0_max SENSORS_LM80_IN0_MAX in0:2 in1_max SENSORS_LM80_IN1_MAX in1:2 in2_max SENSORS_LM80_IN2_MAX in2:2 in3_max SENSORS_LM80_IN3_MAX in3:2 in4_max SENSORS_LM80_IN4_MAX in4:2 in5_max SENSORS_LM80_IN5_MAX in5:2 in6_max SENSORS_LM80_IN6_MAX in6:2 fan1 SENSORS_LM80_FAN1 fan1:2 fan2 SENSORS_LM80_FAN2 fan2:2 fan1_min SENSORS_LM80_FAN1_MIN fan1:1 fan2_min SENSORS_LM80_FAN2_MIN fan2:1 temp SENSORS_LM80_TEMP temp:5 temp_hot_hyst SENSORS_LM80_TEMP_HOT_HYST temp:2 temp_hot_max SENSORS_LM80_TEMP_HOT_MAX temp:1 temp_os_hyst SENSORS_LM80_TEMP_OS_HYST temp:4 temp_os_max SENSORS_LM80_TEMP_OS_MAX temp:3 fan1_div SENSORS_LM80_FAN1_DIV fan_div:1 fan2_div SENSORS_LM80_FAN2_DIV fan_div:2 alarms SENSORS_LM80_ALARMS alarms:1