GNU Info

Info Node: (gcc-295.info)Conversions

(gcc-295.info)Conversions


Next: RTL Declarations Prev: Bit Fields Up: RTL
Enter node , (file) or (file)node

Conversions
===========

   All conversions between machine modes must be represented by
explicit conversion operations.  For example, an expression which is
the sum of a byte and a full word cannot be written as `(plus:SI
(reg:QI 34) (reg:SI 80))' because the `plus' operation requires two
operands of the same machine mode.  Therefore, the byte-sized operand
is enclosed in a conversion operation, as in

     (plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

   The conversion operation is not a mere placeholder, because there
may be more than one way of converting from a given starting mode to
the desired final mode.  The conversion operation code says how to do
it.

   For all conversion operations, X must not be `VOIDmode' because the
mode in which to do the conversion would not be known.  The conversion
must either be done at compile-time or X must be placed into a register.

`(sign_extend:M X)'
     Represents the result of sign-extending the value X to machine
     mode M.  M must be a fixed-point mode and X a fixed-point value of
     a mode narrower than M.

`(zero_extend:M X)'
     Represents the result of zero-extending the value X to machine
     mode M.  M must be a fixed-point mode and X a fixed-point value of
     a mode narrower than M.

`(float_extend:M X)'
     Represents the result of extending the value X to machine mode M.
     M must be a floating point mode and X a floating point value of a
     mode narrower than M.

`(truncate:M X)'
     Represents the result of truncating the value X to machine mode M.
     M must be a fixed-point mode and X a fixed-point value of a mode
     wider than M.

`(float_truncate:M X)'
     Represents the result of truncating the value X to machine mode M.
     M must be a floating point mode and X a floating point value of a
     mode wider than M.

`(float:M X)'
     Represents the result of converting fixed point value X, regarded
     as signed, to floating point mode M.

`(unsigned_float:M X)'
     Represents the result of converting fixed point value X, regarded
     as unsigned, to floating point mode M.

`(fix:M X)'
     When M is a fixed point mode, represents the result of converting
     floating point value X to mode M, regarded as signed.  How
     rounding is done is not specified, so this operation may be used
     validly in compiling C code only for integer-valued operands.

`(unsigned_fix:M X)'
     Represents the result of converting floating point value X to
     fixed point mode M, regarded as unsigned.  How rounding is done is
     not specified.

`(fix:M X)'
     When M is a floating point mode, represents the result of
     converting floating point value X (valid for mode M) to an
     integer, still represented in floating point mode M, by rounding
     towards zero.


automatically generated by info2www version 1.2.2.9