GNU Info

Info Node: (gcc-295.info)Type Attributes

(gcc-295.info)Type Attributes


Next: Alignment Prev: Variable Attributes Up: C Extensions
Enter node , (file) or (file)node

Specifying Attributes of Types
==============================

   The keyword `__attribute__' allows you to specify special attributes
of `struct' and `union' types when you define such types.  This keyword
is followed by an attribute specification inside double parentheses.
Three attributes are currently defined for types: `aligned', `packed',
and `transparent_union'.  Other attributes are defined for functions
(Note: Function Attributes.) and for variables (Note: Variable
Attributes.).

   You may also specify any one of these attributes with `__' preceding
and following its keyword.  This allows you to use these attributes in
header files without being concerned about a possible macro of the same
name.  For example, you may use `__aligned__' instead of `aligned'.

   You may specify the `aligned' and `transparent_union' attributes
either in a `typedef' declaration or just past the closing curly brace
of a complete enum, struct or union type *definition* and the `packed'
attribute only past the closing brace of a definition.

   You may also specify attributes between the enum, struct or union
tag and the name of the type rather than after the closing brace.

`aligned (ALIGNMENT)'
     This attribute specifies a minimum alignment (in bytes) for
     variables of the specified type.  For example, the declarations:

          struct S { short f[3]; } __attribute__ ((aligned (8)));
          typedef int more_aligned_int __attribute__ ((aligned (8)));

     force the compiler to insure (as far as it can) that each variable
     whose type is `struct S' or `more_aligned_int' will be allocated
     and aligned *at least* on a 8-byte boundary.  On a Sparc, having
     all variables of type `struct S' aligned to 8-byte boundaries
     allows the compiler to use the `ldd' and `std' (doubleword load and
     store) instructions when copying one variable of type `struct S' to
     another, thus improving run-time efficiency.

     Note that the alignment of any given `struct' or `union' type is
     required by the ANSI C standard to be at least a perfect multiple
     of the lowest common multiple of the alignments of all of the
     members of the `struct' or `union' in question.  This means that
     you *can* effectively adjust the alignment of a `struct' or `union'
     type by attaching an `aligned' attribute to any one of the members
     of such a type, but the notation illustrated in the example above
     is a more obvious, intuitive, and readable way to request the
     compiler to adjust the alignment of an entire `struct' or `union'
     type.

     As in the preceding example, you can explicitly specify the
     alignment (in bytes) that you wish the compiler to use for a given
     `struct' or `union' type.  Alternatively, you can leave out the
     alignment factor and just ask the compiler to align a type to the
     maximum useful alignment for the target machine you are compiling
     for.  For example, you could write:

          struct S { short f[3]; } __attribute__ ((aligned));

     Whenever you leave out the alignment factor in an `aligned'
     attribute specification, the compiler automatically sets the
     alignment for the type to the largest alignment which is ever used
     for any data type on the target machine you are compiling for.
     Doing this can often make copy operations more efficient, because
     the compiler can use whatever instructions copy the biggest chunks
     of memory when performing copies to or from the variables which
     have types that you have aligned this way.

     In the example above, if the size of each `short' is 2 bytes, then
     the size of the entire `struct S' type is 6 bytes.  The smallest
     power of two which is greater than or equal to that is 8, so the
     compiler sets the alignment for the entire `struct S' type to 8
     bytes.

     Note that although you can ask the compiler to select a
     time-efficient alignment for a given type and then declare only
     individual stand-alone objects of that type, the compiler's
     ability to select a time-efficient alignment is primarily useful
     only when you plan to create arrays of variables having the
     relevant (efficiently aligned) type.  If you declare or use arrays
     of variables of an efficiently-aligned type, then it is likely
     that your program will also be doing pointer arithmetic (or
     subscripting, which amounts to the same thing) on pointers to the
     relevant type, and the code that the compiler generates for these
     pointer arithmetic operations will often be more efficient for
     efficiently-aligned types than for other types.

     The `aligned' attribute can only increase the alignment; but you
     can decrease it by specifying `packed' as well.  See below.

     Note that the effectiveness of `aligned' attributes may be limited
     by inherent limitations in your linker.  On many systems, the
     linker is only able to arrange for variables to be aligned up to a
     certain maximum alignment.  (For some linkers, the maximum
     supported alignment may be very very small.)  If your linker is
     only able to align variables up to a maximum of 8 byte alignment,
     then specifying `aligned(16)' in an `__attribute__' will still
     only provide you with 8 byte alignment.  See your linker
     documentation for further information.

`packed'
     This attribute, attached to an `enum', `struct', or `union' type
     definition, specified that the minimum required memory be used to
     represent the type.

     Specifying this attribute for `struct' and `union' types is
     equivalent to specifying the `packed' attribute on each of the
     structure or union members.  Specifying the `-fshort-enums' flag
     on the line is equivalent to specifying the `packed' attribute on
     all `enum' definitions.

     You may only specify this attribute after a closing curly brace on
     an `enum' definition, not in a `typedef' declaration, unless that
     declaration also contains the definition of the `enum'.

`transparent_union'
     This attribute, attached to a `union' type definition, indicates
     that any function parameter having that union type causes calls to
     that function to be treated in a special way.

     First, the argument corresponding to a transparent union type can
     be of any type in the union; no cast is required.  Also, if the
     union contains a pointer type, the corresponding argument can be a
     null pointer constant or a void pointer expression; and if the
     union contains a void pointer type, the corresponding argument can
     be any pointer expression.  If the union member type is a pointer,
     qualifiers like `const' on the referenced type must be respected,
     just as with normal pointer conversions.

     Second, the argument is passed to the function using the calling
     conventions of first member of the transparent union, not the
     calling conventions of the union itself.  All members of the union
     must have the same machine representation; this is necessary for
     this argument passing to work properly.

     Transparent unions are designed for library functions that have
     multiple interfaces for compatibility reasons.  For example,
     suppose the `wait' function must accept either a value of type
     `int *' to comply with Posix, or a value of type `union wait *' to
     comply with the 4.1BSD interface.  If `wait''s parameter were
     `void *', `wait' would accept both kinds of arguments, but it
     would also accept any other pointer type and this would make
     argument type checking less useful.  Instead, `<sys/wait.h>' might
     define the interface as follows:

          typedef union
            {
              int *__ip;
              union wait *__up;
            } wait_status_ptr_t __attribute__ ((__transparent_union__));
          
          pid_t wait (wait_status_ptr_t);

     This interface allows either `int *' or `union wait *' arguments
     to be passed, using the `int *' calling convention.  The program
     can call `wait' with arguments of either type:

          int w1 () { int w; return wait (&w); }
          int w2 () { union wait w; return wait (&w); }

     With this interface, `wait''s implementation might look like this:

          pid_t wait (wait_status_ptr_t p)
          {
            return waitpid (-1, p.__ip, 0);
          }

`unused'
     When attached to a type (including a `union' or a `struct'), this
     attribute means that variables of that type are meant to appear
     possibly unused.  GNU CC will not produce a warning for any
     variables of that type, even if the variable appears to do
     nothing.  This is often the case with lock or thread classes,
     which are usually defined and then not referenced, but contain
     constructors and destructors that have nontrivial bookkeeping
     functions.

   To specify multiple attributes, separate them by commas within the
double parentheses: for example, `__attribute__ ((aligned (16),
packed))'.


automatically generated by info2www version 1.2.2.9