GNU Info

Info Node: (gcc-300.info)DEC Alpha Options

(gcc-300.info)DEC Alpha Options


Next: Clipper Options Prev: Intel 960 Options Up: Submodel Options
Enter node , (file) or (file)node

DEC Alpha Options
-----------------

   These `-m' options are defined for the DEC Alpha implementations:

`-mno-soft-float'
`-msoft-float'
     Use (do not use) the hardware floating-point instructions for
     floating-point operations.  When `-msoft-float' is specified,
     functions in `libgcc1.c' will be used to perform floating-point
     operations.  Unless they are replaced by routines that emulate the
     floating-point operations, or compiled in such a way as to call
     such emulations routines, these routines will issue floating-point
     operations.   If you are compiling for an Alpha without
     floating-point operations, you must ensure that the library is
     built so as not to call them.

     Note that Alpha implementations without floating-point operations
     are required to have floating-point registers.

`-mfp-reg'
`-mno-fp-regs'
     Generate code that uses (does not use) the floating-point register
     set.  `-mno-fp-regs' implies `-msoft-float'.  If the floating-point
     register set is not used, floating point operands are passed in
     integer registers as if they were integers and floating-point
     results are passed in $0 instead of $f0.  This is a non-standard
     calling sequence, so any function with a floating-point argument
     or return value called by code compiled with `-mno-fp-regs' must
     also be compiled with that option.

     A typical use of this option is building a kernel that does not
     use, and hence need not save and restore, any floating-point
     registers.

`-mieee'
     The Alpha architecture implements floating-point hardware
     optimized for maximum performance.  It is mostly compliant with
     the IEEE floating point standard.  However, for full compliance,
     software assistance is required.  This option generates code fully
     IEEE compliant code _except_ that the INEXACT-FLAG is not
     maintained (see below).  If this option is turned on, the CPP
     macro `_IEEE_FP' is defined during compilation.  The option is a
     shorthand for: `-D_IEEE_FP -mfp-trap-mode=su -mtrap-precision=i
     -mieee-conformant'.  The resulting code is less efficient but is
     able to correctly support denormalized numbers and exceptional
     IEEE values such as not-a-number and plus/minus infinity.  Other
     Alpha compilers call this option `-ieee_with_no_inexact'.

`-mieee-with-inexact'
     This is like `-mieee' except the generated code also maintains the
     IEEE INEXACT-FLAG.  Turning on this option causes the generated
     code to implement fully-compliant IEEE math.  The option is a
     shorthand for `-D_IEEE_FP -D_IEEE_FP_INEXACT' plus the three
     following: `-mieee-conformant', `-mfp-trap-mode=sui', and
     `-mtrap-precision=i'.  On some Alpha implementations the resulting
     code may execute significantly slower than the code generated by
     default.  Since there is very little code that depends on the
     INEXACT-FLAG, you should normally not specify this option.  Other
     Alpha compilers call this option `-ieee_with_inexact'.

`-mfp-trap-mode=TRAP-MODE'
     This option controls what floating-point related traps are enabled.
     Other Alpha compilers call this option `-fptm TRAP-MODE'.  The
     trap mode can be set to one of four values:

    `n'
          This is the default (normal) setting.  The only traps that
          are enabled are the ones that cannot be disabled in software
          (e.g., division by zero trap).

    `u'
          In addition to the traps enabled by `n', underflow traps are
          enabled as well.

    `su'
          Like `su', but the instructions are marked to be safe for
          software completion (see Alpha architecture manual for
          details).

    `sui'
          Like `su', but inexact traps are enabled as well.

`-mfp-rounding-mode=ROUNDING-MODE'
     Selects the IEEE rounding mode.  Other Alpha compilers call this
     option `-fprm ROUNDING-MODE'.  The ROUNDING-MODE can be one of:

    `n'
          Normal IEEE rounding mode.  Floating point numbers are
          rounded towards the nearest machine number or towards the
          even machine number in case of a tie.

    `m'
          Round towards minus infinity.

    `c'
          Chopped rounding mode.  Floating point numbers are rounded
          towards zero.

    `d'
          Dynamic rounding mode.  A field in the floating point control
          register (FPCR, see Alpha architecture reference manual)
          controls the rounding mode in effect.  The C library
          initializes this register for rounding towards plus infinity.
          Thus, unless your program modifies the FPCR, `d' corresponds
          to round towards plus infinity.

`-mtrap-precision=TRAP-PRECISION'
     In the Alpha architecture, floating point traps are imprecise.
     This means without software assistance it is impossible to recover
     from a floating trap and program execution normally needs to be
     terminated.  GCC can generate code that can assist operating
     system trap handlers in determining the exact location that caused
     a floating point trap.  Depending on the requirements of an
     application, different levels of precisions can be selected:

    `p'
          Program precision.  This option is the default and means a
          trap handler can only identify which program caused a
          floating point exception.

    `f'
          Function precision.  The trap handler can determine the
          function that caused a floating point exception.

    `i'
          Instruction precision.  The trap handler can determine the
          exact instruction that caused a floating point exception.

     Other Alpha compilers provide the equivalent options called
     `-scope_safe' and `-resumption_safe'.

`-mieee-conformant'
     This option marks the generated code as IEEE conformant.  You must
     not use this option unless you also specify `-mtrap-precision=i'
     and either `-mfp-trap-mode=su' or `-mfp-trap-mode=sui'.  Its only
     effect is to emit the line `.eflag 48' in the function prologue of
     the generated assembly file.  Under DEC Unix, this has the effect
     that IEEE-conformant math library routines will be linked in.

`-mbuild-constants'
     Normally GCC examines a 32- or 64-bit integer constant to see if
     it can construct it from smaller constants in two or three
     instructions.  If it cannot, it will output the constant as a
     literal and generate code to load it from the data segment at
     runtime.

     Use this option to require GCC to construct _all_ integer constants
     using code, even if it takes more instructions (the maximum is
     six).

     You would typically use this option to build a shared library
     dynamic loader.  Itself a shared library, it must relocate itself
     in memory before it can find the variables and constants in its
     own data segment.

`-malpha-as'
`-mgas'
     Select whether to generate code to be assembled by the
     vendor-supplied assembler (`-malpha-as') or by the GNU assembler
     `-mgas'.

`-mbwx'
`-mno-bwx'
`-mcix'
`-mno-cix'
`-mmax'
`-mno-max'
     Indicate whether GCC should generate code to use the optional BWX,
     CIX, and MAX instruction sets.  The default is to use the
     instruction sets supported by the CPU type specified via `-mcpu='
     option or that of the CPU on which GCC was built if none was
     specified.

`-mcpu=CPU_TYPE'
     Set the instruction set, register set, and instruction scheduling
     parameters for machine type CPU_TYPE.  You can specify either the
     `EV' style name or the corresponding chip number.  GCC supports
     scheduling parameters for the EV4 and EV5 family of processors and
     will choose the default values for the instruction set from the
     processor you specify.  If you do not specify a processor type,
     GCC will default to the processor on which the compiler was built.

     Supported values for CPU_TYPE are

    `ev4'
    `21064'
          Schedules as an EV4 and has no instruction set extensions.

    `ev5'
    `21164'
          Schedules as an EV5 and has no instruction set extensions.

    `ev56'
    `21164a'
          Schedules as an EV5 and supports the BWX extension.

    `pca56'
    `21164pc'
    `21164PC'
          Schedules as an EV5 and supports the BWX and MAX extensions.

    `ev6'
    `21264'
          Schedules as an EV5 (until Digital releases the scheduling
          parameters for the EV6) and supports the BWX, CIX, and MAX
          extensions.

`-mmemory-latency=TIME'
     Sets the latency the scheduler should assume for typical memory
     references as seen by the application.  This number is highly
     dependent on the memory access patterns used by the application
     and the size of the external cache on the machine.

     Valid options for TIME are

    `NUMBER'
          A decimal number representing clock cycles.

    `L1'
    `L2'
    `L3'
    `main'
          The compiler contains estimates of the number of clock cycles
          for "typical" EV4 & EV5 hardware for the Level 1, 2 & 3 caches
          (also called Dcache, Scache, and Bcache), as well as to main
          memory.  Note that L3 is only valid for EV5.


automatically generated by info2www version 1.2.2.9