GNU Info

Info Node: (gcc-300.info)Types

(gcc-300.info)Types


Next: Scopes Prev: Tree overview Up: Trees
Enter node , (file) or (file)node

Types
=====

   All types have corresponding tree nodes.  However, you should not
assume that there is exactly one tree node corresponding to each type.
There are often several nodes each of which correspond to the same type.

   For the most part, different kinds of types have different tree
codes.  (For example, pointer types use a `POINTER_TYPE' code while
arrays use an `ARRAY_TYPE' code.)  However, pointers to member functions
use the `RECORD_TYPE' code.  Therefore, when writing a `switch'
statement that depends on the code associated with a particular type,
you should take care to handle pointers to member functions under the
`RECORD_TYPE' case label.

   In C++, an array type is not qualified; rather the type of the array
elements is qualified.  This situation is reflected in the intermediate
representation.  The macros described here will always examine the
qualification of the underlying element type when applied to an array
type.  (If the element type is itself an array, then the recursion
continues until a non-array type is found, and the qualification of this
type is examined.)  So, for example, `CP_TYPE_CONST_P' will hold of the
type `const int ()[7]', denoting an array of seven `int's.

   The following functions and macros deal with cv-qualification of
types:
`CP_TYPE_QUALS'
     This macro returns the set of type qualifiers applied to this type.
     This value is `TYPE_UNQUALIFIED' if no qualifiers have been
     applied.  The `TYPE_QUAL_CONST' bit is set if the type is
     `const'-qualified.  The `TYPE_QUAL_VOLATILE' bit is set if the
     type is `volatile'-qualified.  The `TYPE_QUAL_RESTRICT' bit is set
     if the type is `restrict'-qualified.

`CP_TYPE_CONST_P'
     This macro holds if the type is `const'-qualified.

`CP_TYPE_VOLATILE_P'
     This macro holds if the type is `volatile'-qualified.

`CP_TYPE_RESTRICT_P'
     This macro holds if the type is `restrict'-qualified.

`CP_TYPE_CONST_NON_VOLATILE_P'
     This predicate holds for a type that is `const'-qualified, but
     _not_ `volatile'-qualified; other cv-qualifiers are ignored as
     well: only the `const'-ness is tested.

`TYPE_MAIN_VARIANT'
     This macro returns the unqualified version of a type.  It may be
     applied to an unqualified type, but it is not always the identity
     function in that case.

   A few other macros and functions are usable with all types:
`TYPE_SIZE'
     The number of bits required to represent the type, represented as
     an `INTEGER_CST'.  For an incomplete type, `TYPE_SIZE' will be
     `NULL_TREE'.

`TYPE_ALIGN'
     The alignment of the type, in bits, represented as an `int'.

`TYPE_NAME'
     This macro returns a declaration (in the form of a `TYPE_DECL') for
     the type.  (Note this macro does _not_ return a `IDENTIFIER_NODE',
     as you might expect, given its name!)  You can look at the
     `DECL_NAME' of the `TYPE_DECL' to obtain the actual name of the
     type.  The `TYPE_NAME' will be `NULL_TREE' for a type that is not
     a built-in type, the result of a typedef, or a named class type.

`CP_INTEGRAL_TYPE'
     This predicate holds if the type is an integral type.  Notice that
     in C++, enumerations are _not_ integral types.

`ARITHMETIC_TYPE_P'
     This predicate holds if the type is an integral type (in the C++
     sense) or a floating point type.

`CLASS_TYPE_P'
     This predicate holds for a class-type.

`TYPE_BUILT_IN'
     This predicate holds for a built-in type.

`TYPE_PTRMEM_P'
     This predicate holds if the type is a pointer to data member.

`TYPE_PTR_P'
     This predicate holds if the type is a pointer type, and the
     pointee is not a data member.

`TYPE_PTRFN_P'
     This predicate holds for a pointer to function type.

`TYPE_PTROB_P'
     This predicate holds for a pointer to object type.  Note however
     that it does not hold for the generic pointer to object type `void
     *'.  You may use `TYPE_PTROBV_P' to test for a pointer to object
     type as well as `void *'.

`same_type_p'
     This predicate takes two types as input, and holds if they are the
     same type.  For example, if one type is a `typedef' for the other,
     or both are `typedef's for the same type.  This predicate also
     holds if the two trees given as input are simply copies of one
     another; i.e., there is no difference between them at the source
     level, but, for whatever reason, a duplicate has been made in the
     representation.  You should never use `==' (pointer equality) to
     compare types; always use `same_type_p' instead.

   Detailed below are the various kinds of types, and the macros that
can be used to access them.  Although other kinds of types are used
elsewhere in G++, the types described here are the only ones that you
will encounter while examining the intermediate representation.

`VOID_TYPE'
     Used to represent the `void' type.

`INTEGER_TYPE'
     Used to represent the various integral types, including `char',
     `short', `int', `long', and `long long'.  This code is not used
     for enumeration types, nor for the `bool' type.  Note that GCC's
     `CHAR_TYPE' node is _not_ used to represent `char'.  The
     `TYPE_PRECISION' is the number of bits used in the representation,
     represented as an `unsigned int'.  (Note that in the general case
     this is not the same value as `TYPE_SIZE'; suppose that there were
     a 24-bit integer type, but that alignment requirements for the ABI
     required 32-bit alignment.  Then, `TYPE_SIZE' would be an
     `INTEGER_CST' for 32, while `TYPE_PRECISION' would be 24.)  The
     integer type is unsigned if `TREE_UNSIGNED' holds; otherwise, it
     is signed.

     The `TYPE_MIN_VALUE' is an `INTEGER_CST' for the smallest integer
     that may be represented by this type.  Similarly, the
     `TYPE_MAX_VALUE' is an `INTEGER_CST' for the largest integer that
     may be represented by this type.

`REAL_TYPE'
     Used to represent the `float', `double', and `long double' types.
     The number of bits in the floating-point representation is given
     by `TYPE_PRECISION', as in the `INTEGER_TYPE' case.

`COMPLEX_TYPE'
     Used to represent GCC built-in `__complex__' data types.  The
     `TREE_TYPE' is the type of the real and imaginary parts.

`ENUMERAL_TYPE'
     Used to represent an enumeration type.  The `TYPE_PRECISION' gives
     (as an `int'), the number of bits used to represent the type.  If
     there are no negative enumeration constants, `TREE_UNSIGNED' will
     hold.  The minimum and maximum enumeration constants may be
     obtained with `TYPE_MIN_VALUE' and `TYPE_MAX_VALUE', respectively;
     each of these macros returns an `INTEGER_CST'.

     The actual enumeration constants themselves may be obtained by
     looking at the `TYPE_VALUES'.  This macro will return a
     `TREE_LIST', containing the constants.  The `TREE_PURPOSE' of each
     node will be an `IDENTIFIER_NODE' giving the name of the constant;
     the `TREE_VALUE' will be an `INTEGER_CST' giving the value
     assigned to that constant.  These constants will appear in the
     order in which they were declared.  The `TREE_TYPE' of each of
     these constants will be the type of enumeration type itself.

`BOOLEAN_TYPE'
     Used to represent the `bool' type.

`POINTER_TYPE'
     Used to represent pointer types, and pointer to data member types.
     The `TREE_TYPE' gives the type to which this type points.  If the
     type is a pointer to data member type, then `TYPE_PTRMEM_P' will
     hold.  For a pointer to data member type of the form `T X::*',
     `TYPE_PTRMEM_CLASS_TYPE' will be the type `X', while
     `TYPE_PTRMEM_POINTED_TO_TYPE' will be the type `T'.

`REFERENCE_TYPE'
     Used to represent reference types.  The `TREE_TYPE' gives the type
     to which this type refers.

`FUNCTION_TYPE'
     Used to represent the type of non-member functions and of static
     member functions.  The `TREE_TYPE' gives the return type of the
     function.  The `TYPE_ARG_TYPES' are a `TREE_LIST' of the argument
     types.  The `TREE_VALUE' of each node in this list is the type of
     the corresponding argument; the `TREE_PURPOSE' is an expression
     for the default argument value, if any.  If the last node in the
     list is `void_list_node' (a `TREE_LIST' node whose `TREE_VALUE' is
     the `void_type_node'), then functions of this type do not take
     variable arguments.  Otherwise, they do take a variable number of
     arguments.

     Note that in C (but not in C++) a function declared like `void f()'
     is an unprototyped function taking a variable number of arguments;
     the `TYPE_ARG_TYPES' of such a function will be `NULL'.

`METHOD_TYPE'
     Used to represent the type of a non-static member function.  Like a
     `FUNCTION_TYPE', the return type is given by the `TREE_TYPE'.  The
     type of `*this', i.e., the class of which functions of this type
     are a member, is given by the `TYPE_METHOD_BASETYPE'.  The
     `TYPE_ARG_TYPES' is the parameter list, as for a `FUNCTION_TYPE',
     and includes the `this' argument.

`ARRAY_TYPE'
     Used to represent array types.  The `TREE_TYPE' gives the type of
     the elements in the array.  If the array-bound is present in the
     type, the `TYPE_DOMAIN' is an `INTEGER_TYPE' whose
     `TYPE_MIN_VALUE' and `TYPE_MAX_VALUE' will be the lower and upper
     bounds of the array, respectively.  The `TYPE_MIN_VALUE' will
     always be an `INTEGER_CST' for zero, while the `TYPE_MAX_VALUE'
     will be one less than the number of elements in the array, i.e.,
     the highest value which may be used to index an element in the
     array.

`RECORD_TYPE'
     Used to represent `struct' and `class' types, as well as pointers
     to member functions.  If `TYPE_PTRMEMFUNC_P' holds, then this type
     is a pointer-to-member type.  In that case, the
     `TYPE_PTRMEMFUNC_FN_TYPE' is a `POINTER_TYPE' pointing to a
     `METHOD_TYPE'.  The `METHOD_TYPE' is the type of a function
     pointed to by the pointer-to-member function.  If
     `TYPE_PTRMEMFUNC_P' does not hold, this type is a class type.  For
     more information, see Note: Classes.

`UNKNOWN_TYPE'
     This node is used to represent a type the knowledge of which is
     insufficient for a sound processing.

`OFFSET_TYPE'
     This node is used to represent a data member; for example a
     pointer-to-data-member is represented by a `POINTER_TYPE' whose
     `TREE_TYPE' is an `OFFSET_TYPE'.  For a data member `X::m' the
     `TYPE_OFFSET_BASETYPE' is `X' and the `TREE_TYPE' is the type of
     `m'.

`TYPENAME_TYPE'
     Used to represent a construct of the form `typename T::A'.  The
     `TYPE_CONTEXT' is `T'; the `TYPE_NAME' is an `IDENTIFIER_NODE' for
     `A'.  If the type is specified via a template-id, then
     `TYPENAME_TYPE_FULLNAME' yields a `TEMPLATE_ID_EXPR'.  The
     `TREE_TYPE' is non-`NULL' if the node is implicitly generated in
     support for the implicit typename extension; in which case the
     `TREE_TYPE' is a type node for the base-class.

`TYPEOF_TYPE'
     Used to represent the `__typeof__' extension.  The `TYPE_FIELDS'
     is the expression the type of which is being represented.

`UNION_TYPE'
     Used to represent `union' types.  For more information, Note:
     Classes.

   There are variables whose values represent some of the basic types.
These include:
`void_type_node'
     A node for `void'.

`integer_type_node'
     A node for `int'.

`unsigned_type_node.'
     A node for `unsigned int'.

`char_type_node.'
     A node for `char'.

It may sometimes be useful to compare one of these variables with a type
in hand, using `same_type_p'.


automatically generated by info2www version 1.2.2.9