Serializability of a class is enabled by the class implementing the
java.io.Serializable interface. Classes that do not implement this
interface will not have any of their state serialized or
deserialized. All subtypes of a serializable class are themselves
serializable. The serialization interface has no methods or fields
and serves only to identify the semantics of being serializable.
To allow subtypes of non-serializable classes to be serialized, the
subtype may assume responsibility for saving and restoring the
state of the supertype's public, protected, and (if accessible)
package fields. The subtype may assume this responsibility only if
the class it extends has an accessible no-arg constructor to
initialize the class's state. It is an error to declare a class
Serializable in this case. The error will be detected at runtime.
During deserialization, the fields of non-serializable classes will
be initialized using the public or protected no-arg constructor of
the class. A no-arg constructor must be accessible to the subclass
that is serializable. The fields of serializable subclasses will
be restored from the stream.
When traversing a graph, an object may be encountered that does not
support the Serializable interface. In this case the
NotSerializableException will be thrown and will identify the class
of the non-serializable object.
Classes that require special handling during the serialization and deserialization
process must implement special methods with these exact signatures:
The writeObject method is responsible for writing the state of the
object for its particular class so that the corresponding
readObject method can restore it. The default mechanism for saving
the Object's fields can be invoked by calling
out.defaultWriteObject. The method does not need to concern
itself with the state belonging to its superclasses or subclasses.
State is saved by writing the individual fields to the
ObjectOutputStream using the writeObject method or by using the
methods for primitive data types supported by DataOutput.
The readObject method is responsible for reading from the stream and restoring
the classes fields. It may call in.defaultReadObject to invoke
the default mechanism for restoring the object's non-static and non-transient
fields. The defaultReadObject method uses information in the stream to
assign the fields of the object saved in the stream with the correspondingly
named fields in the current object. This handles the case when the class
has evolved to add new fields. The method does not need to concern
itself with the state belonging to its superclasses or subclasses.
State is saved by writing the individual fields to the
ObjectOutputStream using the writeObject method or by using the
methods for primitive data types supported by DataOutput.
Serializable classes that need to designate an alternative object to be
used when writing an object to the stream should implement this
special method with the exact signature:
This writeReplace method is invoked by serialization if the method
exists and it would be accessible from a method defined within the
class of the object being serialized. Thus, the method can have private,
protected and package-private access. Subclass access to this method
follows java accessibility rules.
Classes that need to designate a replacement when an instance of it
is read from the stream should implement this special method with the
exact signatute.
Submit a bug or feature For further API reference and developer documentation, see Java 2 SDK SE Developer Documentation. That documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of terms, workarounds, and working code examples.
Java, Java 2D, and JDBC are trademarks or registered trademarks of Sun Microsystems, Inc. in the US and other countries. Copyright 1993-2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, California, 94303, U.S.A. All Rights Reserved.