Whole document tree
24. Signal HandlingA signal is a software interrupt delivered to a process. The operating system uses signals to report exceptional situations to an executing program. Some signals report errors such as references to invalid memory addresses; others report asynchronous events, such as disconnection of a phone line. The GNU C library defines a variety of signal types, each for a particular kind of event. Some kinds of events make it inadvisable or impossible for the program to proceed as usual, and the corresponding signals normally abort the program. Other kinds of signals that report harmless events are ignored by default. If you anticipate an event that causes signals, you can define a handler function and tell the operating system to run it when that particular type of signal arrives. Finally, one process can send a signal to another process; this allows a parent process to abort a child, or two related processes to communicate and synchronize.
24.1 Basic Concepts of SignalsThis section explains basic concepts of how signals are generated, what happens after a signal is delivered, and how programs can handle signals.
24.1.1 Some Kinds of SignalsA signal reports the occurrence of an exceptional event. These are some of the events that can cause (or generate, or raise) a signal:
Each of these kinds of events (excepting explicit calls to
24.1.2 Concepts of Signal GenerationIn general, the events that generate signals fall into three major categories: errors, external events, and explicit requests.
An error means that a program has done something invalid and cannot
continue execution. But not all kinds of errors generate signals--in
fact, most do not. For example, opening a nonexistent file is an error,
but it does not raise a signal; instead, An external event generally has to do with I/O or other processes. These include the arrival of input, the expiration of a timer, and the termination of a child process.
An explicit request means the use of a library function such as
Signals may be generated synchronously or asynchronously. A synchronous signal pertains to a specific action in the program, and is delivered (unless blocked) during that action. Most errors generate signals synchronously, and so do explicit requests by a process to generate a signal for that same process. On some machines, certain kinds of hardware errors (usually floating-point exceptions) are not reported completely synchronously, but may arrive a few instructions later. Asynchronous signals are generated by events outside the control of the process that receives them. These signals arrive at unpredictable times during execution. External events generate signals asynchronously, and so do explicit requests that apply to some other process. A given type of signal is either typically synchronous or typically asynchronous. For example, signals for errors are typically synchronous because errors generate signals synchronously. But any type of signal can be generated synchronously or asynchronously with an explicit request.
24.1.3 How Signals Are DeliveredWhen a signal is generated, it becomes pending. Normally it remains pending for just a short period of time and then is delivered to the process that was signaled. However, if that kind of signal is currently blocked, it may remain pending indefinitely--until signals of that kind are unblocked. Once unblocked, it will be delivered immediately. See section 24.7 Blocking Signals.
When the signal is delivered, whether right away or after a long delay,
the specified action for that signal is taken. For certain
signals, such as If the specified action for a kind of signal is to ignore it, then any such signal which is generated is discarded immediately. This happens even if the signal is also blocked at the time. A signal discarded in this way will never be delivered, not even if the program subsequently specifies a different action for that kind of signal and then unblocks it. If a signal arrives which the program has neither handled nor ignored, its default action takes place. Each kind of signal has its own default action, documented below (see section 24.2 Standard Signals). For most kinds of signals, the default action is to terminate the process. For certain kinds of signals that represent "harmless" events, the default action is to do nothing.
When a signal terminates a process, its parent process can determine the
cause of termination by examining the termination status code reported
by the The signals that normally represent program errors have a special property: when one of these signals terminates the process, it also writes a core dump file which records the state of the process at the time of termination. You can examine the core dump with a debugger to investigate what caused the error. If you raise a "program error" signal by explicit request, and this terminates the process, it makes a core dump file just as if the signal had been due directly to an error.
24.2 Standard SignalsThis section lists the names for various standard kinds of signals and describes what kind of event they mean. Each signal name is a macro which stands for a positive integer--the signal number for that kind of signal. Your programs should never make assumptions about the numeric code for a particular kind of signal, but rather refer to them always by the names defined here. This is because the number for a given kind of signal can vary from system to system, but the meanings of the names are standardized and fairly uniform. The signal names are defined in the header file `signal.h'.
24.2.1 Program Error SignalsThe following signals are generated when a serious program error is detected by the operating system or the computer itself. In general, all of these signals are indications that your program is seriously broken in some way, and there's usually no way to continue the computation which encountered the error. Some programs handle program error signals in order to tidy up before terminating; for example, programs that turn off echoing of terminal input should handle program error signals in order to turn echoing back on. The handler should end by specifying the default action for the signal that happened and then reraising it; this will cause the program to terminate with that signal, as if it had not had a handler. (See section 24.4.2 Handlers That Terminate the Process.)
Termination is the sensible ultimate outcome from a program error in
most programs. However, programming systems such as Lisp that can load
compiled user programs might need to keep executing even if a user
program incurs an error. These programs have handlers which use
The default action for all of these signals is to cause the process to
terminate. If you block or ignore these signals or establish handlers
for them that return normally, your program will probably break horribly
when such signals happen, unless they are generated by
When one of these program error signals terminates a process, it also
writes a core dump file which records the state of the process at
the time of termination. The core dump file is named `core' and is
written in whichever directory is current in the process at the time.
(On the GNU system, you can specify the file name for core dumps with
the environment variable
BSD systems provide the
24.2.2 Termination SignalsThese signals are all used to tell a process to terminate, in one way or another. They have different names because they're used for slightly different purposes, and programs might want to handle them differently. The reason for handling these signals is usually so your program can tidy up as appropriate before actually terminating. For example, you might want to save state information, delete temporary files, or restore the previous terminal modes. Such a handler should end by specifying the default action for the signal that happened and then reraising it; this will cause the program to terminate with that signal, as if it had not had a handler. (See section 24.4.2 Handlers That Terminate the Process.) The (obvious) default action for all of these signals is to cause the process to terminate.
24.2.3 Alarm SignalsThese signals are used to indicate the expiration of timers. See section 21.5 Setting an Alarm, for information about functions that cause these signals to be sent. The default behavior for these signals is to cause program termination. This default is rarely useful, but no other default would be useful; most of the ways of using these signals would require handler functions in any case.
24.2.4 Asynchronous I/O Signals
The signals listed in this section are used in conjunction with
asynchronous I/O facilities. You have to take explicit action by
calling
24.2.5 Job Control SignalsThese signals are used to support job control. If your system doesn't support job control, then these macros are defined but the signals themselves can't be raised or handled. You should generally leave these signals alone unless you really understand how job control works. See section 27. Job Control.
While a process is stopped, no more signals can be delivered to it until
it is continued, except
When a process in an orphaned process group (see section 27.5 Orphaned Process Groups) receives a
24.2.6 Operation Error SignalsThese signals are used to report various errors generated by an operation done by the program. They do not necessarily indicate a programming error in the program, but an error that prevents an operating system call from completing. The default action for all of them is to cause the process to terminate.
24.2.7 Miscellaneous SignalsThese signals are used for various other purposes. In general, they will not affect your program unless it explicitly uses them for something.
24.2.8 Signal Messages
We mentioned above that the shell prints a message describing the signal
that terminated a child process. The clean way to print a message
describing a signal is to use the functions
There is also an array
24.3 Specifying Signal Actions
The simplest way to change the action for a signal is to use the
The GNU library also implements the more versatile
24.3.1 Basic Signal Handling
The
Compatibility Note: A problem encountered when working with the
Here is a simple example of setting up a handler to delete temporary files when certain fatal signals happen:
Note that if a given signal was previously set to be ignored, this code avoids altering that setting. This is because non-job-control shells often ignore certain signals when starting children, and it is important for the children to respect this.
We do not handle
24.3.2 Advanced Signal Handling
The
The
24.3.3 Interaction of
|
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
sigaction
Function Example
In 24.3.1 Basic Signal Handling, we gave an example of establishing a
simple handler for termination signals using signal
. Here is an
equivalent example using sigaction
:
#include <signal.h> void termination_handler (int signum) { struct temp_file *p; for (p = temp_file_list; p; p = p->next) unlink (p->name); } int main (void) { ... struct sigaction new_action, old_action; /* Set up the structure to specify the new action. */ new_action.sa_handler = termination_handler; sigemptyset (&new_action.sa_mask); new_action.sa_flags = 0; sigaction (SIGINT, NULL, &old_action); if (old_action.sa_handler != SIG_IGN) sigaction (SIGINT, &new_action, NULL); sigaction (SIGHUP, NULL, &old_action); if (old_action.sa_handler != SIG_IGN) sigaction (SIGHUP, &new_action, NULL); sigaction (SIGTERM, NULL, &old_action); if (old_action.sa_handler != SIG_IGN) sigaction (SIGTERM, &new_action, NULL); ... } |
The program just loads the new_action
structure with the desired
parameters and passes it in the sigaction
call. The usage of
sigemptyset
is described later; see 24.7 Blocking Signals.
As in the example using signal
, we avoid handling signals
previously set to be ignored. Here we can avoid altering the signal
handler even momentarily, by using the feature of sigaction
that
lets us examine the current action without specifying a new one.
Here is another example. It retrieves information about the current
action for SIGINT
without changing that action.
struct sigaction query_action; if (sigaction (SIGINT, NULL, &query_action) < 0) /* |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
sigaction
The sa_flags
member of the sigaction
structure is a
catch-all for special features. Most of the time, SA_RESTART
is
a good value to use for this field.
The value of sa_flags
is interpreted as a bit mask. Thus, you
should choose the flags you want to set, OR those flags together,
and store the result in the sa_flags
member of your
sigaction
structure.
Each signal number has its own set of flags. Each call to
sigaction
affects one particular signal number, and the flags
that you specify apply only to that particular signal.
In the GNU C library, establishing a handler with signal
sets all
the flags to zero except for SA_RESTART
, whose value depends on
the settings you have made with siginterrupt
. See section 24.5 Primitives Interrupted by Signals, to see what this is about.
These macros are defined in the header file `signal.h'.
SIGCHLD
signal. When the
flag is set, the system delivers the signal for a terminated child
process but not for one that is stopped. By default, SIGCHLD
is
delivered for both terminated children and stopped children.
Setting this flag for a signal other than SIGCHLD
has no effect.
SIGILL
.
open
, read
or write
),
and the signal handler returns normally. There are two alternatives:
the library function can resume, or it can return failure with error
code EINTR
.
The choice is controlled by the SA_RESTART
flag for the
particular kind of signal that was delivered. If the flag is set,
returning from a handler resumes the library function. If the flag is
clear, returning from a handler makes the function fail.
See section 24.5 Primitives Interrupted by Signals.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When a new process is created (see section 26.4 Creating a Process), it inherits
handling of signals from its parent process. However, when you load a
new process image using the exec
function (see section 26.5 Executing a File), any signals that you've defined your own handlers for revert to
their SIG_DFL
handling. (If you think about it a little, this
makes sense; the handler functions from the old program are specific to
that program, and aren't even present in the address space of the new
program image.) Of course, the new program can establish its own
handlers.
When a program is run by a shell, the shell normally sets the initial
actions for the child process to SIG_DFL
or SIG_IGN
, as
appropriate. It's a good idea to check to make sure that the shell has
not set up an initial action of SIG_IGN
before you establish your
own signal handlers.
Here is an example of how to establish a handler for SIGHUP
, but
not if SIGHUP
is currently ignored:
... struct sigaction temp; sigaction (SIGHUP, NULL, &temp); if (temp.sa_handler != SIG_IGN) { temp.sa_handler = handle_sighup; sigemptyset (&temp.sa_mask); sigaction (SIGHUP, &temp, NULL); } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This section describes how to write a signal handler function that can
be established with the signal
or sigaction
functions.
A signal handler is just a function that you compile together with the
rest of the program. Instead of directly invoking the function, you use
signal
or sigaction
to tell the operating system to call
it when a signal arrives. This is known as establishing the
handler. See section 24.3 Specifying Signal Actions.
There are two basic strategies you can use in signal handler functions:
You need to take special care in writing handler functions because they can be called asynchronously. That is, a handler might be called at any point in the program, unpredictably. If two signals arrive during a very short interval, one handler can run within another. This section describes what your handler should do, and what you should avoid.
24.4.1 Signal Handlers that Return Handlers that return normally, and what this means. 24.4.2 Handlers That Terminate the Process How handler functions terminate a program. 24.4.3 Nonlocal Control Transfer in Handlers Nonlocal transfer of control out of a signal handler. 24.4.4 Signals Arriving While a Handler Runs What happens when signals arrive while the handler is already occupied. 24.4.5 Signals Close Together Merge into One When a second signal arrives before the first is handled. 24.4.6 Signal Handling and Nonreentrant Functions Do not call any functions unless you know they are reentrant with respect to signals. 24.4.7 Atomic Data Access and Signal Handling A single handler can run in the middle of reading or writing a single object.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Handlers which return normally are usually used for signals such as
SIGALRM
and the I/O and interprocess communication signals. But
a handler for SIGINT
might also return normally after setting a
flag that tells the program to exit at a convenient time.
It is not safe to return normally from the handler for a program error signal, because the behavior of the program when the handler function returns is not defined after a program error. See section 24.2.1 Program Error Signals.
Handlers that return normally must modify some global variable in order
to have any effect. Typically, the variable is one that is examined
periodically by the program during normal operation. Its data type
should be sig_atomic_t
for reasons described in 24.4.7 Atomic Data Access and Signal Handling.
Here is a simple example of such a program. It executes the body of
the loop until it has noticed that a SIGALRM
signal has arrived.
This technique is useful because it allows the iteration in progress
when the signal arrives to complete before the loop exits.
#include <signal.h> #include <stdio.h> #include <stdlib.h> /* This flag controls termination of the main loop. */ volatile sig_atomic_t keep_going = 1; /* The signal handler just clears the flag and re-enables itself. */ void catch_alarm (int sig) { keep_going = 0; signal (sig, catch_alarm); } void do_stuff (void) { puts ("Doing stuff while waiting for alarm...."); } int main (void) { /* Establish a handler for SIGALRM signals. */ signal (SIGALRM, catch_alarm); /* Set an alarm to go off in a little while. */ alarm (2); /* Check the flag once in a while to see when to quit. */ while (keep_going) do_stuff (); return EXIT_SUCCESS; } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Handler functions that terminate the program are typically used to cause orderly cleanup or recovery from program error signals and interactive interrupts.
The cleanest way for a handler to terminate the process is to raise the same signal that ran the handler in the first place. Here is how to do this:
volatile sig_atomic_t fatal_error_in_progress = 0; void fatal_error_signal (int sig) { /* Since this handler is established for more than one kind of signal, it might still get invoked recursively by delivery of some other kind of signal. Use a static variable to keep track of that. */ if (fatal_error_in_progress) raise (sig); fatal_error_in_progress = 1; /* Now do the clean up actions: - reset terminal modes - kill child processes - remove lock files */ ... /* Now reraise the signal. We reactivate the signal's default handling, which is to terminate the process. We could just call |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can do a nonlocal transfer of control out of a signal handler using
the setjmp
and longjmp
facilities (see section 23. Non-Local Exits).
When the handler does a nonlocal control transfer, the part of the program that was running will not continue. If this part of the program was in the middle of updating an important data structure, the data structure will remain inconsistent. Since the program does not terminate, the inconsistency is likely to be noticed later on.
There are two ways to avoid this problem. One is to block the signal for the parts of the program that update important data structures. Blocking the signal delays its delivery until it is unblocked, once the critical updating is finished. See section 24.7 Blocking Signals.
The other way to re-initialize the crucial data structures in the signal handler, or make their values consistent.
Here is a rather schematic example showing the reinitialization of one global variable.
#include <signal.h> #include <setjmp.h> jmp_buf return_to_top_level; volatile sig_atomic_t waiting_for_input; void handle_sigint (int signum) { /* We may have been waiting for input when the signal arrived, but we are no longer waiting once we transfer control. */ waiting_for_input = 0; longjmp (return_to_top_level, 1); } int main (void) { ... signal (SIGINT, sigint_handler); ... while (1) { prepare_for_command (); if (setjmp (return_to_top_level) == 0) read_and_execute_command (); } } /* Imagine this is a subroutine used by various commands. */ char * read_data () { if (input_from_terminal) { waiting_for_input = 1; ... waiting_for_input = 0; } else { ... } } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
What happens if another signal arrives while your signal handler function is running?
When the handler for a particular signal is invoked, that signal is
automatically blocked until the handler returns. That means that if two
signals of the same kind arrive close together, the second one will be
held until the first has been handled. (The handler can explicitly
unblock the signal using sigprocmask
, if you want to allow more
signals of this type to arrive; see 24.7.3 Process Signal Mask.)
However, your handler can still be interrupted by delivery of another
kind of signal. To avoid this, you can use the sa_mask
member of
the action structure passed to sigaction
to explicitly specify
which signals should be blocked while the signal handler runs. These
signals are in addition to the signal for which the handler was invoked,
and any other signals that are normally blocked by the process.
See section 24.7.5 Blocking Signals for a Handler.
When the handler returns, the set of blocked signals is restored to the
value it had before the handler ran. So using sigprocmask
inside
the handler only affects what signals can arrive during the execution of
the handler itself, not what signals can arrive once the handler returns.
Portability Note: Always use sigaction
to establish a
handler for a signal that you expect to receive asynchronously, if you
want your program to work properly on System V Unix. On this system,
the handling of a signal whose handler was established with
signal
automatically sets the signal's action back to
SIG_DFL
, and the handler must re-establish itself each time it
runs. This practice, while inconvenient, does work when signals cannot
arrive in succession. However, if another signal can arrive right away,
it may arrive before the handler can re-establish itself. Then the
second signal would receive the default handling, which could terminate
the process.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If multiple signals of the same type are delivered to your process before your signal handler has a chance to be invoked at all, the handler may only be invoked once, as if only a single signal had arrived. In effect, the signals merge into one. This situation can arise when the signal is blocked, or in a multiprocessing environment where the system is busy running some other processes while the signals are delivered. This means, for example, that you cannot reliably use a signal handler to count signals. The only distinction you can reliably make is whether at least one signal has arrived since a given time in the past.
Here is an example of a handler for SIGCHLD
that compensates for
the fact that the number of signals received may not equal the number of
child processes that generate them. It assumes that the program keeps track
of all the child processes with a chain of structures as follows:
struct process
{
struct process *next;
/* The process ID of this child. */
int pid;
/* The descriptor of the pipe or pseudo terminal
on which output comes from this child. */
int input_descriptor;
/* Nonzero if this process has stopped or terminated. */
sig_atomic_t have_status;
/* The status of this child; 0 if running,
otherwise a status value from |
This example also uses a flag to indicate whether signals have arrived since some time in the past--whenever the program last cleared it to zero.
/* Nonzero means some child's status has changed
so look at |
Here is the handler itself:
void sigchld_handler (int signo) { int old_errno = errno; while (1) { register int pid; int w; struct process *p; /* Keep asking for a status until we get a definitive result. */ do { errno = 0; pid = waitpid (WAIT_ANY, &w, WNOHANG | WUNTRACED); } while (pid <= 0 && errno == EINTR); if (pid <= 0) { /* A real failure means there are no more stopped or terminated child processes, so return. */ errno = old_errno; return; } /* Find the process that signaled us, and record its status. */ for (p = process_list; p; p = p->next) if (p->pid == pid) { p->status = w; /* Indicate that the |
Here is the proper way to check the flag process_status_change
:
if (process_status_change) {
struct process *p;
process_status_change = 0;
for (p = process_list; p; p = p->next)
if (p->have_status) {
... Examine |
It is vital to clear the flag before examining the list; otherwise, if a signal were delivered just before the clearing of the flag, and after the appropriate element of the process list had been checked, the status change would go unnoticed until the next signal arrived to set the flag again. You could, of course, avoid this problem by blocking the signal while scanning the list, but it is much more elegant to guarantee correctness by doing things in the right order.
The loop which checks process status avoids examining p->status
until it sees that status has been validly stored. This is to make sure
that the status cannot change in the middle of accessing it. Once
p->have_status
is set, it means that the child process is stopped
or terminated, and in either case, it cannot stop or terminate again
until the program has taken notice. See section 24.4.7.3 Atomic Usage Patterns, for more
information about coping with interruptions during accesses of a
variable.
Here is another way you can test whether the handler has run since the last time you checked. This technique uses a counter which is never changed outside the handler. Instead of clearing the count, the program remembers the previous value and sees whether it has changed since the previous check. The advantage of this method is that different parts of the program can check independently, each part checking whether there has been a signal since that part last checked.
sig_atomic_t process_status_change;
sig_atomic_t last_process_status_change;
...
{
sig_atomic_t prev = last_process_status_change;
last_process_status_change = process_status_change;
if (last_process_status_change != prev) {
struct process *p;
for (p = process_list; p; p = p->next)
if (p->have_status) {
... Examine |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Handler functions usually don't do very much. The best practice is to
write a handler that does nothing but set an external variable that the
program checks regularly, and leave all serious work to the program.
This is best because the handler can be called asynchronously, at
unpredictable times--perhaps in the middle of a primitive function, or
even between the beginning and the end of a C operator that requires
multiple instructions. The data structures being manipulated might
therefore be in an inconsistent state when the handler function is
invoked. Even copying one int
variable into another can take two
instructions on most machines.
This means you have to be very careful about what you do in a signal handler.
volatile
. This tells the compiler that
the value of the variable might change asynchronously, and inhibits
certain optimizations that would be invalidated by such modifications.
A function can be non-reentrant if it uses memory that is not on the stack.
For example, suppose that the signal handler uses gethostbyname
.
This function returns its value in a static object, reusing the same
object each time. If the signal happens to arrive during a call to
gethostbyname
, or even after one (while the program is still
using the value), it will clobber the value that the program asked for.
However, if the program does not use gethostbyname
or any other
function that returns information in the same object, or if it always
blocks signals around each use, then you are safe.
There are a large number of library functions that return values in a fixed object, always reusing the same object in this fashion, and all of them cause the same problem. Function descriptions in this manual always mention this behavior.
This case arises when you do I/O using streams. Suppose that the
signal handler prints a message with fprintf
. Suppose that the
program was in the middle of an fprintf
call using the same
stream when the signal was delivered. Both the signal handler's message
and the program's data could be corrupted, because both calls operate on
the same data structure--the stream itself.
However, if you know that the stream that the handler uses cannot possibly be used by the program at a time when signals can arrive, then you are safe. It is no problem if the program uses some other stream.
malloc
and free
are not reentrant,
because they use a static data structure which records what memory
blocks are free. As a result, no library functions that allocate or
free memory are reentrant. This includes functions that allocate space
to store a result.
The best way to avoid the need to allocate memory in a handler is to allocate in advance space for signal handlers to use.
The best way to avoid freeing memory in a handler is to flag or record the objects to be freed, and have the program check from time to time whether anything is waiting to be freed. But this must be done with care, because placing an object on a chain is not atomic, and if it is interrupted by another signal handler that does the same thing, you could "lose" one of the objects.
errno
is non-reentrant, but you can
correct for this: in the handler, save the original value of
errno
and restore it before returning normally. This prevents
errors that occur within the signal handler from being confused with
errors from system calls at the point the program is interrupted to run
the handler.
This technique is generally applicable; if you want to call in a handler a function that modifies a particular object in memory, you can make this safe by saving and restoring that object.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Whether the data in your application concerns atoms, or mere text, you have to be careful about the fact that access to a single datum is not necessarily atomic. This means that it can take more than one instruction to read or write a single object. In such cases, a signal handler might be invoked in the middle of reading or writing the object.
There are three ways you can cope with this problem. You can use data types that are always accessed atomically; you can carefully arrange that nothing untoward happens if an access is interrupted, or you can block all signals around any access that had better not be interrupted (see section 24.7 Blocking Signals).
24.4.7.1 Problems with Non-Atomic Access A program illustrating interrupted access. 24.4.7.2 Atomic Types Data types that guarantee no interruption. 24.4.7.3 Atomic Usage Patterns Proving that interruption is harmless.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Here is an example which shows what can happen if a signal handler runs in the middle of modifying a variable. (Interrupting the reading of a variable can also lead to paradoxical results, but here we only show writing.)
#include <signal.h> #include <stdio.h> struct two_words { int a, b; } memory; void handler(int signum) { printf ("%d,%d\n", memory.a, memory.b); alarm (1); } int main (void) { static struct two_words zeros = { 0, 0 }, ones = { 1, 1 }; signal (SIGALRM, handler); memory = zeros; alarm (1); while (1) { memory = zeros; memory = ones; } } |
This program fills memory
with zeros, ones, zeros, ones,
alternating forever; meanwhile, once per second, the alarm signal handler
prints the current contents. (Calling printf
in the handler is
safe in this program because it is certainly not being called outside
the handler when the signal happens.)
Clearly, this program can print a pair of zeros or a pair of ones. But
that's not all it can do! On most machines, it takes several
instructions to store a new value in memory
, and the value is
stored one word at a time. If the signal is delivered in between these
instructions, the handler might find that memory.a
is zero and
memory.b
is one (or vice versa).
On some machines it may be possible to store a new value in
memory
with just one instruction that cannot be interrupted. On
these machines, the handler will always print two zeros or two ones.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
To avoid uncertainty about interrupting access to a variable, you can
use a particular data type for which access is always atomic:
sig_atomic_t
. Reading and writing this data type is guaranteed
to happen in a single instruction, so there's no way for a handler to
run "in the middle" of an access.
The type sig_atomic_t
is always an integer data type, but which
one it is, and how many bits it contains, may vary from machine to
machine.
In practice, you can assume that int
and other integer types no
longer than int
are atomic. You can also assume that pointer
types are atomic; that is very convenient. Both of these assumptions
are true on all of the machines that the GNU C library supports and on
all POSIX systems we know of.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Certain patterns of access avoid any problem even if an access is interrupted. For example, a flag which is set by the handler, and tested and cleared by the main program from time to time, is always safe even if access actually requires two instructions. To show that this is so, we must consider each access that could be interrupted, and show that there is no problem if it is interrupted.
An interrupt in the middle of testing the flag is safe because either it's recognized to be nonzero, in which case the precise value doesn't matter, or it will be seen to be nonzero the next time it's tested.
An interrupt in the middle of clearing the flag is no problem because either the value ends up zero, which is what happens if a signal comes in just before the flag is cleared, or the value ends up nonzero, and subsequent events occur as if the signal had come in just after the flag was cleared. As long as the code handles both of these cases properly, it can also handle a signal in the middle of clearing the flag. (This is an example of the sort of reasoning you need to do to figure out whether non-atomic usage is safe.)
Sometimes you can insure uninterrupted access to one object by protecting its use with another object, perhaps one whose type guarantees atomicity. See section 24.4.5 Signals Close Together Merge into One, for an example.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A signal can arrive and be handled while an I/O primitive such as
open
or read
is waiting for an I/O device. If the signal
handler returns, the system faces the question: what should happen next?
POSIX specifies one approach: make the primitive fail right away. The
error code for this kind of failure is EINTR
. This is flexible,
but usually inconvenient. Typically, POSIX applications that use signal
handlers must check for EINTR
after each library function that
can return it, in order to try the call again. Often programmers forget
to check, which is a common source of error.
The GNU library provides a convenient way to retry a call after a
temporary failure, with the macro TEMP_FAILURE_RETRY
:
EINTR
, TEMP_FAILURE_RETRY
evaluates it again,
and over and over until the result is not a temporary failure.
The value returned by TEMP_FAILURE_RETRY
is whatever value
expression produced.
BSD avoids EINTR
entirely and provides a more convenient
approach: to restart the interrupted primitive, instead of making it
fail. If you choose this approach, you need not be concerned with
EINTR
.
You can choose either approach with the GNU library. If you use
sigaction
to establish a signal handler, you can specify how that
handler should behave. If you specify the SA_RESTART
flag,
return from that handler will resume a primitive; otherwise, return from
that handler will cause EINTR
. See section 24.3.5 Flags for sigaction
.
Another way to specify the choice is with the siginterrupt
function. See section 24.10.1 BSD Function to Establish a Handler.
When you don't specify with sigaction
or siginterrupt
what
a particular handler should do, it uses a default choice. The default
choice in the GNU library depends on the feature test macros you have
defined. If you define _BSD_SOURCE
or _GNU_SOURCE
before
calling signal
, the default is to resume primitives; otherwise,
the default is to make them fail with EINTR
. (The library
contains alternate versions of the signal
function, and the
feature test macros determine which one you really call.) See section 1.3.4 Feature Test Macros.
The description of each primitive affected by this issue
lists EINTR
among the error codes it can return.
There is one situation where resumption never happens no matter which
choice you make: when a data-transfer function such as read
or
write
is interrupted by a signal after transferring part of the
data. In this case, the function returns the number of bytes already
transferred, indicating partial success.
This might at first appear to cause unreliable behavior on
record-oriented devices (including datagram sockets; see section 16.10 Datagram Socket Operations),
where splitting one read
or write
into two would read or
write two records. Actually, there is no problem, because interruption
after a partial transfer cannot happen on such devices; they always
transfer an entire record in one burst, with no waiting once data
transfer has started.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Besides signals that are generated as a result of a hardware trap or interrupt, your program can explicitly send signals to itself or to another process.
24.6.1 Signaling Yourself A process can send a signal to itself. 24.6.2 Signaling Another Process Send a signal to another process. 24.6.3 Permission for using kill
24.6.4 Using kill
for Communication
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A process can send itself a signal with the raise
function. This
function is declared in `signal.h'.
raise
function sends the signal signum to the calling
process. It returns zero if successful and a nonzero value if it fails.
About the only reason for failure would be if the value of signum
is invalid.
gsignal
function does the same thing as raise
; it is
provided only for compatibility with SVID.
One convenient use for raise
is to reproduce the default behavior
of a signal that you have trapped. For instance, suppose a user of your
program types the SUSP character (usually C-z; see section 17.4.9 Special Characters) to send it an interactive stop signal
(SIGTSTP
), and you want to clean up some internal data buffers
before stopping. You might set this up like this:
#include <signal.h> /* When a stop signal arrives, set the action back to the default and then resend the signal after doing cleanup actions. */ void tstp_handler (int sig) { signal (SIGTSTP, SIG_DFL); /* Do cleanup actions here. */ ... raise (SIGTSTP); } /* When the process is continued again, restore the signal handler. */ void cont_handler (int sig) { signal (SIGCONT, cont_handler); signal (SIGTSTP, tstp_handler); } /* Enable both handlers during program initialization. */ int main (void) { signal (SIGCONT, cont_handler); signal (SIGTSTP, tstp_handler); ... } |
Portability note: raise
was invented by the ISO C
committee. Older systems may not support it, so using kill
may
be more portable. See section 24.6.2 Signaling Another Process.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The kill
function can be used to send a signal to another process.
In spite of its name, it can be used for a lot of things other than
causing a process to terminate. Some examples of situations where you
might want to send signals between processes are:
This section assumes that you know a little bit about how processes work. For more information on this subject, see 26. Processes.
The kill
function is declared in `signal.h'.
kill
function sends the signal signum to the process
or process group specified by pid. Besides the signals listed in
24.2 Standard Signals, signum can also have a value of zero to
check the validity of the pid.
The pid specifies the process or process group to receive the signal:
pid > 0
pid == 0
pid < -1
pid == -1
A process can send a signal to itself with a call like kill
(getpid(), signum)
. If kill
is used by a process to send
a signal to itself, and the signal is not blocked, then kill
delivers at least one signal (which might be some other pending
unblocked signal instead of the signal signum) to that process
before it returns.
The return value from kill
is zero if the signal can be sent
successfully. Otherwise, no signal is sent, and a value of -1
is
returned. If pid specifies sending a signal to several processes,
kill
succeeds if it can send the signal to at least one of them.
There's no way you can tell which of the processes got the signal
or whether all of them did.
The following errno
error conditions are defined for this function:
EINVAL
EPERM
ESCRH
kill
, but sends signal signum to the
process group pgid. This function is provided for compatibility
with BSD; using kill
to do this is more portable.
As a simple example of kill
, the call kill (getpid (),
sig)
has the same effect as raise (sig)
.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
kill
There are restrictions that prevent you from using kill
to send
signals to any random process. These are intended to prevent antisocial
behavior such as arbitrarily killing off processes belonging to another
user. In typical use, kill
is used to pass signals between
parent, child, and sibling processes, and in these situations you
normally do have permission to send signals. The only common exception
is when you run a setuid program in a child process; if the program
changes its real UID as well as its effective UID, you may not have
permission to send a signal. The su
program does this.
Whether a process has permission to send a signal to another process is determined by the user IDs of the two processes. This concept is discussed in detail in 29.2 The Persona of a Process.
Generally, for a process to be able to send a signal to another process, either the sending process must belong to a privileged user (like `root'), or the real or effective user ID of the sending process must match the real or effective user ID of the receiving process. If the receiving process has changed its effective user ID from the set-user-ID mode bit on its process image file, then the owner of the process image file is used in place of its current effective user ID. In some implementations, a parent process might be able to send signals to a child process even if the user ID's don't match, and other implementations might enforce other restrictions.
The SIGCONT
signal is a special case. It can be sent if the
sender is part of the same session as the receiver, regardless of
user IDs.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
kill
for Communication SIGUSR1
and
SIGUSR2
signals are provided for. Since these signals are fatal
by default, the process that is supposed to receive them must trap them
through signal
or sigaction
.
In this example, a parent process forks a child process and then waits
for the child to complete its initialization. The child process tells
the parent when it is ready by sending it a SIGUSR1
signal, using
the kill
function.
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
/* When a |
This example uses a busy wait, which is bad, because it wastes CPU cycles that other programs could otherwise use. It is better to ask the system to wait until the signal arrives. See the example in 24.8 Waiting for a Signal.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Blocking a signal means telling the operating system to hold it and
deliver it later. Generally, a program does not block signals
indefinitely--it might as well ignore them by setting their actions to
SIG_IGN
. But it is useful to block signals briefly, to prevent
them from interrupting sensitive operations. For instance:
sigprocmask
function to block signals while you
modify global variables that are also modified by the handlers for these
signals.
sa_mask
in your sigaction
call to block
certain signals while a particular signal handler runs. This way, the
signal handler can run without being interrupted itself by signals.
24.7.1 Why Blocking Signals is Useful The purpose of blocking signals. 24.7.2 Signal Sets How to specify which signals to block. 24.7.3 Process Signal Mask Blocking delivery of signals to your process during normal execution. 24.7.4 Blocking to Test for Delivery of a Signal 24.7.5 Blocking Signals for a Handler Blocking additional signals while a handler is being run. 24.7.6 Checking for Pending Signals 24.7.7 Remembering a Signal to Act On Later How you can get almost the same effect as blocking a signal, by handling it and setting a flag to be tested later.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Temporary blocking of signals with sigprocmask
gives you a way to
prevent interrupts during critical parts of your code. If signals
arrive in that part of the program, they are delivered later, after you
unblock them.
One example where this is useful is for sharing data between a signal
handler and the rest of the program. If the type of the data is not
sig_atomic_t
(see section 24.4.7 Atomic Data Access and Signal Handling), then the signal
handler could run when the rest of the program has only half finished
reading or writing the data. This would lead to confusing consequences.
To make the program reliable, you can prevent the signal handler from running while the rest of the program is examining or modifying that data--by blocking the appropriate signal around the parts of the program that touch the data.
Blocking signals is also necessary when you want to perform a certain
action only if a signal has not arrived. Suppose that the handler for
the signal sets a flag of type sig_atomic_t
; you would like to
test the flag and perform the action if the flag is not set. This is
unreliable. Suppose the signal is delivered immediately after you test
the flag, but before the consequent action: then the program will
perform the action even though the signal has arrived.
The only way to test reliably for whether a signal has yet arrived is to test while the signal is blocked.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
All of the signal blocking functions use a data structure called a signal set to specify what signals are affected. Thus, every activity involves two stages: creating the signal set, and then passing it as an argument to a library function.
These facilities are declared in the header file `signal.h'.
sigset_t
data type is used to represent a signal set.
Internally, it may be implemented as either an integer or structure
type.
For portability, use only the functions described in this section to
initialize, change, and retrieve information from sigset_t
objects--don't try to manipulate them directly.
There are two ways to initialize a signal set. You can initially
specify it to be empty with sigemptyset
and then add specified
signals individually. Or you can specify it to be full with
sigfillset
and then delete specified signals individually.
You must always initialize the signal set with one of these two
functions before using it in any other way. Don't try to set all the
signals explicitly because the sigset_t
object might include some
other information (like a version field) that needs to be initialized as
well. (In addition, it's not wise to put into your program an
assumption that the system has no signals aside from the ones you know
about.)
0
.
0
.
sigaddset
does is modify set; it does not block or
unblock any signals.
The return value is 0
on success and -1
on failure.
The following errno
error condition is defined for this function:
EINVAL
sigdelset
does is modify set; it does not
block or unblock any signals. The return value and error conditions are
the same as for sigaddset
.
Finally, there is a function to test what signals are in a signal set:
sigismember
function tests whether the signal signum is
a member of the signal set set. It returns 1
if the signal
is in the set, 0
if not, and -1
if there is an error.
The following errno
error condition is defined for this function:
EINVAL
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The collection of signals that are currently blocked is called the signal mask. Each process has its own signal mask. When you create a new process (see section 26.4 Creating a Process), it inherits its parent's mask. You can block or unblock signals with total flexibility by modifying the signal mask.
The prototype for the sigprocmask
function is in `signal.h'.
sigprocmask
function is used to examine or change the calling
process's signal mask. The how argument determines how the signal
mask is changed, and must be one of the following values:
SIG_BLOCK
set
---add them to the existing mask. In
other words, the new mask is the union of the existing mask and
set.
SIG_UNBLOCK
SIG_SETMASK
The last argument, oldset, is used to return information about the
old process signal mask. If you just want to change the mask without
looking at it, pass a null pointer as the oldset argument.
Similarly, if you want to know what's in the mask without changing it,
pass a null pointer for set (in this case the how argument
is not significant). The oldset argument is often used to
remember the previous signal mask in order to restore it later. (Since
the signal mask is inherited over fork
and exec
calls, you
can't predict what its contents are when your program starts running.)
If invoking sigprocmask
causes any pending signals to be
unblocked, at least one of those signals is delivered to the process
before sigprocmask
returns. The order in which pending signals
are delivered is not specified, but you can control the order explicitly
by making multiple sigprocmask
calls to unblock various signals
one at a time.
The sigprocmask
function returns 0
if successful, and -1
to indicate an error. The following errno
error conditions are
defined for this function:
EINVAL
You can't block the SIGKILL
and SIGSTOP
signals, but
if the signal set includes these, sigprocmask
just ignores
them instead of returning an error status.
Remember, too, that blocking program error signals such as SIGFPE
leads to undesirable results for signals generated by an actual program
error (as opposed to signals sent with raise
or kill
).
This is because your program may be too broken to be able to continue
executing to a point where the signal is unblocked again.
See section 24.2.1 Program Error Signals.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Now for a simple example. Suppose you establish a handler for
SIGALRM
signals that sets a flag whenever a signal arrives, and
your main program checks this flag from time to time and then resets it.
You can prevent additional SIGALRM
signals from arriving in the
meantime by wrapping the critical part of the code with calls to
sigprocmask
, like this:
/* This variable is set by the SIGALRM signal handler. */ volatile sig_atomic_t flag = 0; int main (void) { sigset_t block_alarm; ... /* Initialize the signal mask. */ sigemptyset (&block_alarm); sigaddset (&block_alarm, SIGALRM); while (1) { /* Check if a signal has arrived; if so, reset the flag. */ sigprocmask (SIG_BLOCK, &block_alarm, NULL); if (flag) { actions-if-not-arrived flag = 0; } sigprocmask (SIG_UNBLOCK, &block_alarm, NULL); ... } } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When a signal handler is invoked, you usually want it to be able to finish without being interrupted by another signal. From the moment the handler starts until the moment it finishes, you must block signals that might confuse it or corrupt its data.
When a handler function is invoked on a signal, that signal is
automatically blocked (in addition to any other signals that are already
in the process's signal mask) during the time the handler is running.
If you set up a handler for SIGTSTP
, for instance, then the
arrival of that signal forces further SIGTSTP
signals to wait
during the execution of the handler.
However, by default, other kinds of signals are not blocked; they can arrive during handler execution.
The reliable way to block other kinds of signals during the execution of
the handler is to use the sa_mask
member of the sigaction
structure.
Here is an example:
#include <signal.h> #include <stddef.h> void catch_stop (); void install_handler (void) { struct sigaction setup_action; sigset_t block_mask; sigemptyset (&block_mask); /* Block other terminal-generated signals while handler runs. */ sigaddset (&block_mask, SIGINT); sigaddset (&block_mask, SIGQUIT); setup_action.sa_handler = catch_stop; setup_action.sa_mask = block_mask; setup_action.sa_flags = 0; sigaction (SIGTSTP, &setup_action, NULL); } |
This is more reliable than blocking the other signals explicitly in the code for the handler. If you block signals explicitly in the handler, you can't avoid at least a short interval at the beginning of the handler where they are not yet blocked.
You cannot remove signals from the process's current mask using this
mechanism. However, you can make calls to sigprocmask
within
your handler to block or unblock signals as you wish.
In any case, when the handler returns, the system restores the mask that was in place before the handler was entered. If any signals that become unblocked by this restoration are pending, the process will receive those signals immediately, before returning to the code that was interrupted.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can find out which signals are pending at any time by calling
sigpending
. This function is declared in `signal.h'.
sigpending
function stores information about pending signals
in set. If there is a pending signal that is blocked from
delivery, then that signal is a member of the returned set. (You can
test whether a particular signal is a member of this set using
sigismember
; see 24.7.2 Signal Sets.)
The return value is 0
if successful, and -1
on failure.
Testing whether a signal is pending is not often useful. Testing when that signal is not blocked is almost certainly bad design.
Here is an example.
#include <signal.h> #include <stddef.h> sigset_t base_mask, waiting_mask; sigemptyset (&base_mask); sigaddset (&base_mask, SIGINT); sigaddset (&base_mask, SIGTSTP); /* Block user interrupts while doing other processing. */ sigprocmask (SIG_SETMASK, &base_mask, NULL); ... /* After a while, check to see whether any signals are pending. */ sigpending (&waiting_mask); if (sigismember (&waiting_mask, SIGINT)) { /* User has tried to kill the process. */ } else if (sigismember (&waiting_mask, SIGTSTP)) { /* User has tried to stop the process. */ } |
Remember that if there is a particular signal pending for your process,
additional signals of that same type that arrive in the meantime might
be discarded. For example, if a SIGINT
signal is pending when
another SIGINT
signal arrives, your program will probably only
see one of them when you unblock this signal.
Portability Note: The sigpending
function is new in
POSIX.1. Older systems have no equivalent facility.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Instead of blocking a signal using the library facilities, you can get almost the same results by making the handler set a flag to be tested later, when you "unblock". Here is an example:
/* If this flag is nonzero, don't handle the signal right away. */ volatile sig_atomic_t signal_pending; /* This is nonzero if a signal arrived and was not handled. */ volatile sig_atomic_t defer_signal; void handler (int signum) { if (defer_signal) signal_pending = signum; else ... /* ``Really'' handle the signal. */ } ... void update_mumble (int frob) { /* Prevent signals from having immediate effect. */ defer_signal++; /* Now update |
Note how the particular signal that arrives is stored in
signal_pending
. That way, we can handle several types of
inconvenient signals with the same mechanism.
We increment and decrement defer_signal
so that nested critical
sections will work properly; thus, if update_mumble
were called
with signal_pending
already nonzero, signals would be deferred
not only within update_mumble
, but also within the caller. This
is also why we do not check signal_pending
if defer_signal
is still nonzero.
The incrementing and decrementing of defer_signal
each require more
than one instruction; it is possible for a signal to happen in the
middle. But that does not cause any problem. If the signal happens
early enough to see the value from before the increment or decrement,
that is equivalent to a signal which came before the beginning of the
increment or decrement, which is a case that works properly.
It is absolutely vital to decrement defer_signal
before testing
signal_pending
, because this avoids a subtle bug. If we did
these things in the other order, like this,
if (defer_signal == 1 && signal_pending != 0) raise (signal_pending); defer_signal--; |
then a signal arriving in between the if
statement and the decrement
would be effectively "lost" for an indefinite amount of time. The
handler would merely set defer_signal
, but the program having
already tested this variable, it would not test the variable again.
Bugs like these are called timing errors. They are especially bad because they happen only rarely and are nearly impossible to reproduce. You can't expect to find them with a debugger as you would find a reproducible bug. So it is worth being especially careful to avoid them.
(You would not be tempted to write the code in this order, given the use
of defer_signal
as a counter which must be tested along with
signal_pending
. After all, testing for zero is cleaner than
testing for one. But if you did not use defer_signal
as a
counter, and gave it values of zero and one only, then either order
might seem equally simple. This is a further advantage of using a
counter for defer_signal
: it will reduce the chance you will
write the code in the wrong order and create a subtle bug.)
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If your program is driven by external events, or uses signals for synchronization, then when it has nothing to do it should probably wait until a signal arrives.
24.8.1 Using pause
The simple way, using pause
.24.8.2 Problems with pause
Why the simple way is often not very good. 24.8.3 Using sigsuspend
Reliably waiting for a specific signal.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
pause
The simple way to wait until a signal arrives is to call pause
.
Please read about its disadvantages, in the following section, before
you use it.
pause
function suspends program execution until a signal
arrives whose action is either to execute a handler function, or to
terminate the process.
If the signal causes a handler function to be executed, then
pause
returns. This is considered an unsuccessful return (since
"successful" behavior would be to suspend the program forever), so the
return value is -1
. Even if you specify that other primitives
should resume when a system handler returns (see section 24.5 Primitives Interrupted by Signals), this has no effect on pause
; it always fails when a
signal is handled.
The following errno
error conditions are defined for this function:
EINTR
If the signal causes program termination, pause
doesn't return
(obviously).
This function is a cancellation point in multithreaded programs. This
is a problem if the thread allocates some resources (like memory, file
descriptors, semaphores or whatever) at the time pause
is
called. If the thread gets cancelled these resources stay allocated
until the program ends. To avoid this calls to pause
should be
protected using cancellation handlers.
The pause
function is declared in `unistd.h'.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
pause
The simplicity of pause
can conceal serious timing errors that
can make a program hang mysteriously.
It is safe to use pause
if the real work of your program is done
by the signal handlers themselves, and the "main program" does nothing
but call pause
. Each time a signal is delivered, the handler
will do the next batch of work that is to be done, and then return, so
that the main loop of the program can call pause
again.
You can't safely use pause
to wait until one more signal arrives,
and then resume real work. Even if you arrange for the signal handler
to cooperate by setting a flag, you still can't use pause
reliably. Here is an example of this problem:
/* |
This has a bug: the signal could arrive after the variable
usr_interrupt
is checked, but before the call to pause
.
If no further signals arrive, the process would never wake up again.
You can put an upper limit on the excess waiting by using sleep
in a loop, instead of using pause
. (See section 21.6 Sleeping, for more
about sleep
.) Here is what this looks like:
/* |
For some purposes, that is good enough. But with a little more
complexity, you can wait reliably until a particular signal handler is
run, using sigsuspend
.
See section 24.8.3 Using sigsuspend
.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
sigsuspend
The clean and reliable way to wait for a signal to arrive is to block it
and then use sigsuspend
. By using sigsuspend
in a loop,
you can wait for certain kinds of signals, while letting other kinds of
signals be handled by their handlers.
If the process is woken up by delivery of a signal that invokes a handler
function, and the handler function returns, then sigsuspend
also
returns.
The mask remains set only as long as sigsuspend
is waiting.
The function sigsuspend
always restores the previous signal mask
when it returns.
The return value and error conditions are the same as for pause
.
With sigsuspend
, you can replace the pause
or sleep
loop in the previous section with something completely reliable:
sigset_t mask, oldmask; ... /* Set up the mask of signals to temporarily block. */ sigemptyset (&mask); sigaddset (&mask, SIGUSR1); ... /* Wait for a signal to arrive. */ sigprocmask (SIG_BLOCK, &mask, &oldmask); while (!usr_interrupt) sigsuspend (&oldmask); sigprocmask (SIG_UNBLOCK, &mask, NULL); |
This last piece of code is a little tricky. The key point to remember
here is that when sigsuspend
returns, it resets the process's
signal mask to the original value, the value from before the call to
sigsuspend
---in this case, the SIGUSR1
signal is once
again blocked. The second call to sigprocmask
is
necessary to explicitly unblock this signal.
One other point: you may be wondering why the while
loop is
necessary at all, since the program is apparently only waiting for one
SIGUSR1
signal. The answer is that the mask passed to
sigsuspend
permits the process to be woken up by the delivery of
other kinds of signals, as well--for example, job control signals. If
the process is woken up by a signal that doesn't set
usr_interrupt
, it just suspends itself again until the "right"
kind of signal eventually arrives.
This technique takes a few more lines of preparation, but that is needed just once for each kind of wait criterion you want to use. The code that actually waits is just four lines.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A signal stack is a special area of memory to be used as the execution
stack during signal handlers. It should be fairly large, to avoid any
danger that it will overflow in turn; the macro SIGSTKSZ
is
defined to a canonical size for signal stacks. You can use
malloc
to allocate the space for the stack. Then call
sigaltstack
or sigstack
to tell the system to use that
space for the signal stack.
You don't need to write signal handlers differently in order to use a signal stack. Switching from one stack to the other happens automatically. (Some non-GNU debuggers on some machines may get confused if you examine a stack trace while a handler that uses the signal stack is running.)
There are two interfaces for telling the system to use a separate signal
stack. sigstack
is the older interface, which comes from 4.2
BSD. sigaltstack
is the newer interface, and comes from 4.4
BSD. The sigaltstack
interface has the advantage that it does
not require your program to know which direction the stack grows, which
depends on the specific machine and operating system.
void *ss_sp
size_t ss_size
There are two macros defined in `signal.h' that you should use in calculating this size:
SIGSTKSZ
MINSIGSTKSZ
For most cases, just using SIGSTKSZ
for ss_size
is
sufficient. But if you know how much stack space your program's signal
handlers will need, you may want to use a different size. In this case,
you should allocate MINSIGSTKSZ
additional bytes for the signal
stack and increase ss_size
accordingly.
int ss_flags
sigaltstack
function specifies an alternate stack for use
during signal handling. When a signal is received by the process and
its action indicates that the signal stack is used, the system arranges
a switch to the currently installed signal stack while the handler for
that signal is executed.
If oldstack is not a null pointer, information about the currently installed signal stack is returned in the location it points to. If stack is not a null pointer, then this is installed as the new stack for use by signal handlers.
The return value is 0
on success and -1
on failure. If
sigaltstack
fails, it sets errno
to one of these values:
EINVAL
ENOMEM
MINSIGSTKSZ
.
Here is the older sigstack
interface. You should use
sigaltstack
instead on systems that have it.
void *ss_sp
int ss_onstack
sigstack
function specifies an alternate stack for use during
signal handling. When a signal is received by the process and its
action indicates that the signal stack is used, the system arranges a
switch to the currently installed signal stack while the handler for
that signal is executed.
If oldstack is not a null pointer, information about the currently installed signal stack is returned in the location it points to. If stack is not a null pointer, then this is installed as the new stack for use by signal handlers.
The return value is 0
on success and -1
on failure.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This section describes alternative signal handling functions derived from BSD Unix. These facilities were an advance, in their time; today, they are mostly obsolete, and supported mainly for compatibility with BSD Unix.
There are many similarities between the BSD and POSIX signal handling facilities, because the POSIX facilities were inspired by the BSD facilities. Besides having different names for all the functions to avoid conflicts, the main differences between the two are:
int
bit mask, rather than
as a sigset_t
object.
The BSD facilities are declared in `signal.h'.
24.10.1 BSD Function to Establish a Handler 24.10.2 BSD Functions for Blocking Signals
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
struct sigaction
(see section 24.3.2 Advanced Signal Handling); it is used to specify signal actions
to the sigvec
function. It contains the following members:
sighandler_t sv_handler
int sv_mask
int sv_flags
sv_onstack
.
These symbolic constants can be used to provide values for the
sv_flags
field of a sigvec
structure. This field is a bit
mask value, so you bitwise-OR the flags of interest to you together.
sv_flags
field of a sigvec
structure, it means to use the signal stack when delivering the signal.
sv_flags
field of a sigvec
structure, it means that system calls interrupted by this kind of signal
should not be restarted if the handler returns; instead, the system
calls should return with a EINTR
error status. See section 24.5 Primitives Interrupted by Signals.
sv_flags
field of a sigvec
structure, it means to reset the action for the signal back to
SIG_DFL
when the signal is received.
sigaction
(see section 24.3.2 Advanced Signal Handling); it installs the action action for the signal signum,
returning information about the previous action in effect for that signal
in old-action.
EINTR
. See section 24.5 Primitives Interrupted by Signals.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
sigmask
together to specify more than one signal. For example,
(sigmask (SIGTSTP) | sigmask (SIGSTOP) | sigmask (SIGTTIN) | sigmask (SIGTTOU)) |
specifies a mask that includes all the job-control stop signals.
sigprocmask
(see section 24.7.3 Process Signal Mask) with a how argument of SIG_BLOCK
: it adds the
signals specified by mask to the calling process's set of blocked
signals. The return value is the previous set of blocked signals.
sigprocmask
(see section 24.7.3 Process Signal Mask) with a how argument of SIG_SETMASK
: it sets
the calling process's signal mask to mask. The return value is
the previous set of blocked signals.
sigsuspend
(see section 24.8 Waiting for a Signal): it sets the calling process's signal mask to mask,
and waits for a signal to arrive. On return the previous set of blocked
signals is restored.
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |